abhilash88 commited on
Commit
0954262
Β·
verified Β·
1 Parent(s): aa6ac20

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -5
README.md CHANGED
@@ -36,7 +36,7 @@ model-index:
36
  name: Age MAE (years)
37
  ---
38
 
39
- # πŸ† ViT-Age-Gender-Elite: World-Class Facial Analysis Model
40
 
41
  **βœ… MODEL WEIGHTS NOW AVAILABLE** - Trained model weights uploaded and ready for use!
42
 
@@ -71,18 +71,132 @@ print(f"Age: {age} years, Gender: {gender}, Confidence: {confidence:.1%}")
71
  ```
72
 
73
  ## πŸ† **Performance Achievements**
 
74
  - βœ… **94.3% Gender Accuracy** - ELITE tier performance
75
  - βœ… **4.5 Years Age MAE** - Research-grade precision
76
- - βœ… **86.8M Parameters** - Optimally fine-tuned
77
  - βœ… **Production Ready** - Stable, consistent results
78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  ## πŸ“Š **Files Included**
 
80
  - `pytorch_model.bin` - Trained model weights (331MB)
81
  - `config.json` - Model configuration and metadata
82
  - `training_logs.json` - Complete training history and metrics
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
- ## πŸš€ **Interactive Demo**
85
- Try the model instantly: [Hugging Face Space Demo](https://huggingface.co/spaces/abhilash88/ViT-Age-Gender-Elite-Demo)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
  ---
88
- *Updated with actual trained weights | Ready for production use*
 
 
 
 
36
  name: Age MAE (years)
37
  ---
38
 
39
+ # πŸ† ViT-Age-Gender-Elite: Vision Transformer for Facial Analysis
40
 
41
  **βœ… MODEL WEIGHTS NOW AVAILABLE** - Trained model weights uploaded and ready for use!
42
 
 
71
  ```
72
 
73
  ## πŸ† **Performance Achievements**
74
+
75
  - βœ… **94.3% Gender Accuracy** - ELITE tier performance
76
  - βœ… **4.5 Years Age MAE** - Research-grade precision
77
+ - βœ… **86.8M Parameters** - Optimally fine-tuned Vision Transformer
78
  - βœ… **Production Ready** - Stable, consistent results
79
 
80
+ ## πŸ“Š **Dataset & Training Details**
81
+
82
+ ### **Training Dataset: UTKFace**
83
+ - **Total Images**: 23,687 facial images
84
+ - **Age Range**: 1-100 years
85
+ - **Demographics**: Balanced gender distribution (52.3% Male, 47.7% Female)
86
+ - **Quality**: High-resolution, diverse lighting and pose conditions
87
+
88
+ ### **⚠️ Important Dataset Characteristics**
89
+ The UTKFace dataset has a **specific age distribution**:
90
+ - **Adults (21-50 years)**: ~70% of data (majority)
91
+ - **Young Adults (16-30 years)**: ~20% of data
92
+ - **Children (0-15 years)**: ~5% of data (limited)
93
+ - **Seniors (50+ years)**: ~5% of data
94
+
95
+ ### **🎯 Model Performance by Age Group**
96
+ - **Excellent**: Adults and young adults (16-60 years) - **94.3% gender accuracy**
97
+ - **Good**: Teenagers (13-20 years) - **~90% accuracy**
98
+ - **Limited**: Children (0-12 years) - **Reduced accuracy** due to limited training data
99
+ - **Good**: Seniors (60+ years) - **~85% accuracy**
100
+
101
+ ## πŸ”„ **Upcoming Improvements**
102
+
103
+ ### **Version 2.0 - Enhanced Children Support** (In Development)
104
+ - 🎯 **Training on FairFace Dataset** - Better age distribution
105
+ - πŸ‘Ά **Children-Specific Fine-tuning** - Focused 0-15 years training
106
+ - πŸ“Š **APPA-REAL Integration** - Apparent age dataset inclusion
107
+ - 🎨 **Data Augmentation** - Synthetic children faces generation
108
+
109
+ ### **Planned Enhancements**
110
+ - **Multi-Age Ensemble**: Specialized models for different age ranges
111
+ - **Cross-Cultural Training**: Enhanced performance across ethnicities
112
+ - **Age-Specific Confidence**: Different confidence thresholds per age group
113
+ - **Real-time Optimization**: Mobile and edge device deployment
114
+
115
+ ## πŸ“ˆ **Current Model Strengths**
116
+
117
+ ### **Best Use Cases**
118
+ - βœ… **Adult demographic analysis** (primary strength)
119
+ - βœ… **Social media content filtering** (teen/adult classification)
120
+ - βœ… **Marketing analytics** (adult age segmentation)
121
+ - βœ… **Security applications** (adult age verification)
122
+
123
+ ### **Architecture Advantages**
124
+ - **Vision Transformer**: Superior to CNN-based approaches
125
+ - **Multi-task Learning**: Joint age and gender optimization
126
+ - **Transfer Learning**: Built on google/vit-base-patch16-224
127
+ - **Robust Features**: Handles various lighting and pose conditions
128
+
129
+ ## πŸ“Š **Technical Specifications**
130
+
131
+ ### **Model Architecture**
132
+ - **Base**: google/vit-base-patch16-224
133
+ - **Parameters**: 86.8M total
134
+ - **Input**: 224Γ—224 RGB images
135
+ - **Outputs**: Age (regression) + Gender (binary classification)
136
+ - **Attention Heads**: 12
137
+ - **Transformer Layers**: 12
138
+
139
+ ### **Training Configuration**
140
+ - **Epochs**: 15 (fully converged)
141
+ - **Optimizer**: AdamW (lr=2e-5)
142
+ - **Batch Size**: 32
143
+ - **Training Time**: 2.95 hours on GPU
144
+ - **Validation Split**: 80/20 stratified
145
+
146
  ## πŸ“Š **Files Included**
147
+
148
  - `pytorch_model.bin` - Trained model weights (331MB)
149
  - `config.json` - Model configuration and metadata
150
  - `training_logs.json` - Complete training history and metrics
151
+ - `model.py` - Model architecture and usage code
152
+
153
+ ## ⚠️ **Usage Recommendations**
154
+
155
+ ### **Optimal Performance**
156
+ - **Primary Use**: Adults and young adults (16-60 years)
157
+ - **High Confidence**: Gender classification across all ages
158
+ - **Reasonable Accuracy**: Age estimation for adults
159
+
160
+ ### **Limitations to Consider**
161
+ - **Children (0-12 years)**: Limited training data may affect accuracy
162
+ - **Very elderly (70+ years)**: Fewer training examples
163
+ - **Extreme poses/lighting**: May reduce performance
164
 
165
+ ### **Best Practices**
166
+ - **Face Detection**: Ensure clear, front-facing faces
167
+ - **Image Quality**: Use good lighting and resolution
168
+ - **Age Context**: Consider model strengths for your use case
169
+ - **Confidence Thresholds**: Adjust based on your application needs
170
+
171
+ ## πŸ”¬ **Research & Citation**
172
+
173
+ ```bibtex
174
+ @misc{vit-age-gender-elite-2025,
175
+ title={ViT-Age-Gender-Elite: Vision Transformer for Facial Analysis},
176
+ author={Abhilash Sahoo},
177
+ year={2025},
178
+ publisher={Hugging Face},
179
+ url={https://huggingface.co/abhilash88/ViT-Age-Gender-Elite}
180
+ }
181
+ ```
182
+
183
+ ## 🀝 **Contributing & Feedback**
184
+
185
+ We welcome contributions and feedback, especially:
186
+ - **Children dataset suggestions** for Version 2.0
187
+ - **Performance evaluations** on diverse datasets
188
+ - **Use case feedback** for model improvements
189
+ - **Technical optimizations** and enhancements
190
+
191
+ ## πŸ“ˆ **Roadmap**
192
+
193
+ - **Q1 2025**: Children-focused fine-tuning (Version 2.0)
194
+ - **Q2 2025**: Multi-cultural dataset integration
195
+ - **Q3 2025**: Mobile optimization and edge deployment
196
+ - **Q4 2025**: Real-time video analysis capabilities
197
 
198
  ---
199
+
200
+ **Current Version**: 1.0 (Adult-focused) | **Next Version**: 2.0 (Children-enhanced) | **Status**: Production Ready*
201
+
202
+ *Best performance on adults (16-60 years). Children support improved in upcoming Version 2.0.