Upload alt_tag_generator.py with huggingface_hub
Browse files- alt_tag_generator.py +300 -0
alt_tag_generator.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
AI-Powered Alt Tag Generator
|
3 |
+
Complete accessibility tool for generating automatic alt tags from images
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import time
|
8 |
+
import warnings
|
9 |
+
from io import BytesIO
|
10 |
+
import requests
|
11 |
+
from PIL import Image
|
12 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
13 |
+
from config import CONFIG, SUPPORTED_LANGUAGES
|
14 |
+
|
15 |
+
warnings.filterwarnings("ignore")
|
16 |
+
|
17 |
+
class AltTagGenerator:
|
18 |
+
"""AI-powered alt tag generator using BLIP model"""
|
19 |
+
|
20 |
+
def __init__(self, device='auto', verbose=True):
|
21 |
+
self.verbose = verbose
|
22 |
+
self.device = 'cuda' if torch.cuda.is_available() and device != 'cpu' else 'cpu'
|
23 |
+
|
24 |
+
if self.verbose:
|
25 |
+
print(f"Initializing Alt Tag Generator on {self.device}")
|
26 |
+
|
27 |
+
self.model_loaded = False
|
28 |
+
self._load_models()
|
29 |
+
|
30 |
+
def _load_models(self):
|
31 |
+
"""Load BLIP model and processor"""
|
32 |
+
try:
|
33 |
+
if self.verbose:
|
34 |
+
print("📥 Loading BLIP model...")
|
35 |
+
|
36 |
+
self.processor = BlipProcessor.from_pretrained(
|
37 |
+
"Salesforce/blip-image-captioning-base",
|
38 |
+
cache_dir="./models"
|
39 |
+
)
|
40 |
+
|
41 |
+
self.model = BlipForConditionalGeneration.from_pretrained(
|
42 |
+
"Salesforce/blip-image-captioning-base",
|
43 |
+
torch_dtype=torch.float16 if self.device == 'cuda' else torch.float32,
|
44 |
+
low_cpu_mem_usage=True,
|
45 |
+
cache_dir="./models"
|
46 |
+
)
|
47 |
+
|
48 |
+
self.model = self.model.to(self.device)
|
49 |
+
self.model.eval()
|
50 |
+
self.model_loaded = True
|
51 |
+
|
52 |
+
if self.verbose:
|
53 |
+
print("✅ BLIP model loaded successfully")
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
print(f"❌ Error loading model: {e}")
|
57 |
+
self.model_loaded = False
|
58 |
+
|
59 |
+
def load_image(self, image_source):
|
60 |
+
"""Load image from URL, file path, or PIL Image"""
|
61 |
+
try:
|
62 |
+
if isinstance(image_source, str):
|
63 |
+
if image_source.startswith(('http://', 'https://')):
|
64 |
+
response = requests.get(image_source, timeout=15)
|
65 |
+
response.raise_for_status()
|
66 |
+
image = Image.open(BytesIO(response.content))
|
67 |
+
else:
|
68 |
+
image = Image.open(image_source)
|
69 |
+
else:
|
70 |
+
image = image_source
|
71 |
+
|
72 |
+
image = image.convert('RGB')
|
73 |
+
|
74 |
+
# Resize if too large
|
75 |
+
max_size = 800
|
76 |
+
if max(image.size) > max_size:
|
77 |
+
ratio = max_size / max(image.size)
|
78 |
+
new_size = tuple(int(dim * ratio) for dim in image.size)
|
79 |
+
image = image.resize(new_size, Image.Resampling.LANCZOS)
|
80 |
+
|
81 |
+
return image
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
raise Exception(f"Failed to load image: {e}")
|
85 |
+
|
86 |
+
def generate_caption(self, image):
|
87 |
+
"""Generate caption using BLIP model"""
|
88 |
+
if not self.model_loaded:
|
89 |
+
return {
|
90 |
+
'caption': 'Model not loaded',
|
91 |
+
'processing_time': 0.0,
|
92 |
+
'confidence': 0.0,
|
93 |
+
'error': 'Model failed to load'
|
94 |
+
}
|
95 |
+
|
96 |
+
start_time = time.time()
|
97 |
+
|
98 |
+
try:
|
99 |
+
if self.device == 'cuda':
|
100 |
+
torch.cuda.empty_cache()
|
101 |
+
|
102 |
+
inputs = self.processor(image, return_tensors="pt")
|
103 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
104 |
+
|
105 |
+
with torch.no_grad():
|
106 |
+
output = self.model.generate(
|
107 |
+
**inputs,
|
108 |
+
max_length=50,
|
109 |
+
num_beams=4,
|
110 |
+
early_stopping=True,
|
111 |
+
do_sample=False,
|
112 |
+
repetition_penalty=1.1,
|
113 |
+
length_penalty=1.0
|
114 |
+
)
|
115 |
+
|
116 |
+
caption = self.processor.decode(output[0], skip_special_tokens=True)
|
117 |
+
|
118 |
+
del inputs, output
|
119 |
+
if self.device == 'cuda':
|
120 |
+
torch.cuda.empty_cache()
|
121 |
+
|
122 |
+
processing_time = time.time() - start_time
|
123 |
+
|
124 |
+
return {
|
125 |
+
'caption': caption,
|
126 |
+
'processing_time': processing_time,
|
127 |
+
'confidence': 0.85,
|
128 |
+
'error': None
|
129 |
+
}
|
130 |
+
|
131 |
+
except Exception as e:
|
132 |
+
return {
|
133 |
+
'caption': 'Processing failed',
|
134 |
+
'processing_time': time.time() - start_time,
|
135 |
+
'confidence': 0.0,
|
136 |
+
'error': f'Error: {e}'
|
137 |
+
}
|
138 |
+
|
139 |
+
def create_alt_variations(self, caption):
|
140 |
+
"""Create different types of alt tags from caption"""
|
141 |
+
caption = caption.strip()
|
142 |
+
|
143 |
+
if caption.lower().startswith('a '):
|
144 |
+
clean_caption = caption[2:]
|
145 |
+
elif caption.lower().startswith('an '):
|
146 |
+
clean_caption = caption[3:]
|
147 |
+
else:
|
148 |
+
clean_caption = caption
|
149 |
+
|
150 |
+
words = clean_caption.split()
|
151 |
+
variations = {}
|
152 |
+
|
153 |
+
# SHORT: 3-4 key words
|
154 |
+
if len(words) >= 3:
|
155 |
+
key_words = []
|
156 |
+
for word in words[:5]:
|
157 |
+
if word.lower() not in ['with', 'a', 'lot', 'of', 'the', 'and', 'or', 'in', 'on', 'at']:
|
158 |
+
key_words.append(word)
|
159 |
+
variations['short'] = ' '.join(key_words[:3])
|
160 |
+
else:
|
161 |
+
variations['short'] = clean_caption
|
162 |
+
|
163 |
+
# MEDIUM: 6-8 words
|
164 |
+
if len(words) <= 8:
|
165 |
+
variations['medium'] = clean_caption
|
166 |
+
else:
|
167 |
+
medium_words = words[:8]
|
168 |
+
for i in range(6, 8):
|
169 |
+
if i < len(words) and words[i].lower() in ['and', 'or', 'with', 'in', 'on', 'at']:
|
170 |
+
medium_words = words[:i]
|
171 |
+
break
|
172 |
+
variations['medium'] = ' '.join(medium_words)
|
173 |
+
|
174 |
+
# LONG: Full caption
|
175 |
+
variations['long'] = clean_caption
|
176 |
+
|
177 |
+
# ACCESSIBILITY: Optimized for screen readers
|
178 |
+
variations['accessibility'] = f"Image shows {clean_caption.lower()}"
|
179 |
+
|
180 |
+
# SEO: Keywords only
|
181 |
+
stop_words = {'a', 'an', 'the', 'of', 'with', 'in', 'on', 'at', 'and', 'or', 'but', 'is', 'are'}
|
182 |
+
seo_words = [word for word in words if word.lower() not in stop_words]
|
183 |
+
variations['seo'] = ' '.join(seo_words[:6]).lower()
|
184 |
+
|
185 |
+
# Clean up all variations
|
186 |
+
for key in variations:
|
187 |
+
variations[key] = variations[key].strip()
|
188 |
+
if not variations[key]:
|
189 |
+
variations[key] = 'Image'
|
190 |
+
|
191 |
+
return variations
|
192 |
+
|
193 |
+
def generate_alt_tags(self, image_source):
|
194 |
+
"""Main method to generate comprehensive alt tags"""
|
195 |
+
total_start = time.time()
|
196 |
+
|
197 |
+
if self.verbose:
|
198 |
+
print(f"🎯 Generating alt tags...")
|
199 |
+
|
200 |
+
try:
|
201 |
+
image = self.load_image(image_source)
|
202 |
+
caption_result = self.generate_caption(image)
|
203 |
+
|
204 |
+
if caption_result['error']:
|
205 |
+
raise Exception(caption_result['error'])
|
206 |
+
|
207 |
+
alt_variations = self.create_alt_variations(caption_result['caption'])
|
208 |
+
total_time = time.time() - total_start
|
209 |
+
|
210 |
+
results = {
|
211 |
+
'source': str(image_source),
|
212 |
+
'image_size': image.size,
|
213 |
+
'caption': caption_result['caption'],
|
214 |
+
'alt_tags': alt_variations,
|
215 |
+
'confidence': caption_result['confidence'],
|
216 |
+
'processing_time': {
|
217 |
+
'caption': caption_result['processing_time'],
|
218 |
+
'total': total_time
|
219 |
+
},
|
220 |
+
'device_used': self.device,
|
221 |
+
'model_info': {
|
222 |
+
'name': 'BLIP Image Captioning',
|
223 |
+
'version': 'base',
|
224 |
+
'provider': 'Salesforce'
|
225 |
+
}
|
226 |
+
}
|
227 |
+
|
228 |
+
if self.verbose:
|
229 |
+
print(f"✅ Alt tags generated in {total_time:.2f}s")
|
230 |
+
|
231 |
+
return results
|
232 |
+
|
233 |
+
except Exception as e:
|
234 |
+
return {
|
235 |
+
'error': str(e),
|
236 |
+
'alt_tags': {
|
237 |
+
'short': 'Image',
|
238 |
+
'medium': 'Image content unavailable',
|
239 |
+
'long': 'Image content unavailable',
|
240 |
+
'accessibility': 'Image: content unavailable',
|
241 |
+
'seo': 'image'
|
242 |
+
},
|
243 |
+
'processing_time': {'total': time.time() - total_start},
|
244 |
+
'device_used': self.device
|
245 |
+
}
|
246 |
+
|
247 |
+
def display_results(self, results):
|
248 |
+
"""Display results in a formatted way"""
|
249 |
+
if 'error' in results:
|
250 |
+
print(f"❌ Error: {results['error']}")
|
251 |
+
return
|
252 |
+
|
253 |
+
print(f"\nALT TAG RESULTS")
|
254 |
+
print("=" * 50)
|
255 |
+
print(f"Source: {results['source']}")
|
256 |
+
print(f"Size: {results['image_size']}")
|
257 |
+
print(f"Caption: {results['caption']}")
|
258 |
+
print(f"Device: {results['device_used']}")
|
259 |
+
print(f"Time: {results['processing_time']['total']:.2f}s")
|
260 |
+
print(f"Confidence: {results['confidence']:.2f}")
|
261 |
+
|
262 |
+
print(f"\nALT TAG VARIATIONS:")
|
263 |
+
print("-" * 30)
|
264 |
+
for tag_type, alt_text in results['alt_tags'].items():
|
265 |
+
print(f"{tag_type.upper():>13}: {alt_text}")
|
266 |
+
print("=" * 50)
|
267 |
+
|
268 |
+
def quick_demo():
|
269 |
+
"""Quick demonstration of the alt tag generator"""
|
270 |
+
print("🎯 Quick Demo - AI Alt Tag Generator")
|
271 |
+
print("=" * 40)
|
272 |
+
|
273 |
+
test_images = [
|
274 |
+
"https://images.unsplash.com/photo-1514888286974-6c03e2ca1dba?w=400",
|
275 |
+
"https://images.unsplash.com/photo-1546069901-ba9599a7e63c?w=400",
|
276 |
+
]
|
277 |
+
|
278 |
+
generator = AltTagGenerator()
|
279 |
+
|
280 |
+
for i, image_url in enumerate(test_images, 1):
|
281 |
+
print(f"\n🖼️ Test Image {i}:")
|
282 |
+
print(f"URL: {image_url}")
|
283 |
+
|
284 |
+
try:
|
285 |
+
results = generator.generate_alt_tags(image_url)
|
286 |
+
|
287 |
+
if 'error' not in results:
|
288 |
+
print(f"✅ Caption: {results['caption']}")
|
289 |
+
print(f"⏱️ Time: {results['processing_time']['total']:.2f}s")
|
290 |
+
print(f"📝 Alt tags:")
|
291 |
+
for tag_type, alt_text in results['alt_tags'].items():
|
292 |
+
print(f" {tag_type}: {alt_text}")
|
293 |
+
else:
|
294 |
+
print(f"❌ Error: {results['error']}")
|
295 |
+
|
296 |
+
except Exception as e:
|
297 |
+
print(f"❌ Exception: {e}")
|
298 |
+
|
299 |
+
if __name__ == "__main__":
|
300 |
+
quick_demo()
|