Model save
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: cc-by-nc-4.0
|
4 |
+
base_model: facebook/nllb-200-distilled-600M
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: druk-ai-20250628_0745
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# druk-ai-20250628_0745
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.2690
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0005
|
39 |
+
- train_batch_size: 4
|
40 |
+
- eval_batch_size: 4
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 2
|
43 |
+
- total_train_batch_size: 8
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 100
|
47 |
+
- num_epochs: 3
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
53 |
+
|:-------------:|:------:|:----:|:---------------:|
|
54 |
+
| 4.6718 | 0.0684 | 50 | 3.9966 |
|
55 |
+
| 3.3909 | 0.1367 | 100 | 3.2014 |
|
56 |
+
| 3.2175 | 0.2051 | 150 | 2.9763 |
|
57 |
+
| 3.1066 | 0.2734 | 200 | 2.9230 |
|
58 |
+
| 3.058 | 0.3418 | 250 | 2.8082 |
|
59 |
+
| 2.9733 | 0.4101 | 300 | 2.7560 |
|
60 |
+
| 2.9797 | 0.4785 | 350 | 2.7420 |
|
61 |
+
| 2.714 | 0.5468 | 400 | 2.6686 |
|
62 |
+
| 2.8964 | 0.6152 | 450 | 2.6501 |
|
63 |
+
| 2.7973 | 0.6835 | 500 | 2.6197 |
|
64 |
+
| 2.7552 | 0.7519 | 550 | 2.5710 |
|
65 |
+
| 2.7453 | 0.8202 | 600 | 2.5410 |
|
66 |
+
| 2.9687 | 0.8886 | 650 | 2.5268 |
|
67 |
+
| 2.7995 | 0.9569 | 700 | 2.5237 |
|
68 |
+
| 2.5497 | 1.0253 | 750 | 2.5099 |
|
69 |
+
| 2.6585 | 1.0936 | 800 | 2.4769 |
|
70 |
+
| 2.7442 | 1.1620 | 850 | 2.4660 |
|
71 |
+
| 2.7224 | 1.2303 | 900 | 2.4511 |
|
72 |
+
| 2.704 | 1.2987 | 950 | 2.4375 |
|
73 |
+
| 2.5466 | 1.3671 | 1000 | 2.4223 |
|
74 |
+
| 2.3552 | 1.4354 | 1050 | 2.4044 |
|
75 |
+
| 2.6877 | 1.5038 | 1100 | 2.4021 |
|
76 |
+
| 2.2772 | 1.5721 | 1150 | 2.3974 |
|
77 |
+
| 2.5707 | 1.6405 | 1200 | 2.3753 |
|
78 |
+
| 2.5388 | 1.7088 | 1250 | 2.3624 |
|
79 |
+
| 2.4451 | 1.7772 | 1300 | 2.3741 |
|
80 |
+
| 2.6623 | 1.8455 | 1350 | 2.3595 |
|
81 |
+
| 2.2503 | 1.9139 | 1400 | 2.3445 |
|
82 |
+
| 2.4205 | 1.9822 | 1450 | 2.3315 |
|
83 |
+
| 2.2562 | 2.0506 | 1500 | 2.3277 |
|
84 |
+
| 2.2127 | 2.1189 | 1550 | 2.3287 |
|
85 |
+
| 2.4043 | 2.1873 | 1600 | 2.3091 |
|
86 |
+
| 2.3461 | 2.2556 | 1650 | 2.3168 |
|
87 |
+
| 2.5133 | 2.3240 | 1700 | 2.2984 |
|
88 |
+
| 2.4444 | 2.3923 | 1750 | 2.2961 |
|
89 |
+
| 2.3056 | 2.4607 | 1800 | 2.2970 |
|
90 |
+
| 2.4537 | 2.5290 | 1850 | 2.2844 |
|
91 |
+
| 2.3241 | 2.5974 | 1900 | 2.2835 |
|
92 |
+
| 2.2608 | 2.6658 | 1950 | 2.2756 |
|
93 |
+
| 2.3779 | 2.7341 | 2000 | 2.2758 |
|
94 |
+
| 2.3757 | 2.8025 | 2050 | 2.2691 |
|
95 |
+
| 2.2582 | 2.8708 | 2100 | 2.2710 |
|
96 |
+
| 2.3975 | 2.9392 | 2150 | 2.2690 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- PEFT 0.13.2
|
102 |
+
- Transformers 4.45.0
|
103 |
+
- Pytorch 2.6.0+cu124
|
104 |
+
- Datasets 2.21.0
|
105 |
+
- Tokenizers 0.20.3
|