--- base_model: BAAI/bge-base-en-v1.5 datasets: [] language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1500 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: The depreciation and amortization expense for the year 2021 was recorded at $3,103. sentences: - In what sequence do the signature pages appear relative to the financial documents in this report? - What was the depreciation and amortization expense in 2021? - What was the net impact on other comprehensive income (loss), net of tax, for the fiscal year ended March 31, 2023? - source_sentence: 'Actual Asset Returns: U.S. Plans: (21.20)%, Non-U.S. Plans: (25.40)%.' sentences: - What were the total other current liabilities for the fiscal year ending in 2023 compared to 2022? - What was the percentage of proprietary brand product sales as part of the front store revenues in 2023? - By how much did actual asset returns vary between U.S. and Non-U.S. pension plans in 2023? - source_sentence: Intellectual property rights are important to Nike's brand, success, and competitive position. The company strategically pursues protections of these rights and vigorously protects them against third-party theft and infringement. sentences: - What types of legal issues are generally categorized under Commitments and Contingencies in a Form 10-K? - What role does intellectual property play in Nike's competitive position? - How is the revenue from sales of Online-Hosted Service Games recognized? - source_sentence: Item 3, titled 'Legal Proceedings' in a 10-K filing, directs to Note 16 where specific information is further detailed in Item 8 of Part II. sentences: - How does Garmin manage the costs of manufacturing its products? - What is indicated by Item 3, 'Legal Proceedings', in a 10-K filing? - How much did UnitedHealthcare's cash provided by operating activities amount to in 2023? - source_sentence: During 2023, FedEx ranked 18th in FORTUNE magazine's 'World's Most Admired Companies' list and maintained its position as the highest-ranked delivery company on the list. sentences: - What was the total depreciation and amortization expense for the company in 2023? - What was the valuation allowance against deferred tax assets at the end of 2023, and what changes may affect its realization? - What recognition did FedEx receive from FORTUNE magazine in 2023? model-index: - name: BGE base Financial Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.7766666666666666 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.86 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.89 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9333333333333333 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7766666666666666 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2866666666666667 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17799999999999996 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09333333333333332 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7766666666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.86 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.89 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9333333333333333 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8519532537710081 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8263650793650793 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8285686593594938 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.7566666666666667 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.87 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8933333333333333 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9333333333333333 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7566666666666667 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.29 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17866666666666664 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09333333333333332 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7566666666666667 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.87 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8933333333333333 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9333333333333333 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8462349355848354 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8183306878306877 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8207466430359656 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.76 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.86 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.89 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9266666666666666 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.76 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2866666666666666 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17799999999999996 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09266666666666666 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.76 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.86 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.89 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9266666666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8433224215661056 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8166931216931217 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8190592083326618 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.7066666666666667 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.84 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8633333333333333 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.91 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7066666666666667 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.27999999999999997 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17266666666666666 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09099999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7066666666666667 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.84 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8633333333333333 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.91 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8099084142081584 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7776230158730157 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7810311049771785 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.6833333333333333 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7933333333333333 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8366666666666667 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.88 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6833333333333333 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.26444444444444437 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1673333333333333 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.088 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6833333333333333 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7933333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8366666666666667 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.88 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7796467165928374 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7475780423280424 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.751941519893099 name: Cosine Map@100 --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("adarshheg/bge-base-financial-matryoshka") # Run inference sentences = [ "During 2023, FedEx ranked 18th in FORTUNE magazine's 'World's Most Admired Companies' list and maintained its position as the highest-ranked delivery company on the list.", 'What recognition did FedEx receive from FORTUNE magazine in 2023?', 'What was the valuation allowance against deferred tax assets at the end of 2023, and what changes may affect its realization?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7767 | | cosine_accuracy@3 | 0.86 | | cosine_accuracy@5 | 0.89 | | cosine_accuracy@10 | 0.9333 | | cosine_precision@1 | 0.7767 | | cosine_precision@3 | 0.2867 | | cosine_precision@5 | 0.178 | | cosine_precision@10 | 0.0933 | | cosine_recall@1 | 0.7767 | | cosine_recall@3 | 0.86 | | cosine_recall@5 | 0.89 | | cosine_recall@10 | 0.9333 | | cosine_ndcg@10 | 0.852 | | cosine_mrr@10 | 0.8264 | | **cosine_map@100** | **0.8286** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.7567 | | cosine_accuracy@3 | 0.87 | | cosine_accuracy@5 | 0.8933 | | cosine_accuracy@10 | 0.9333 | | cosine_precision@1 | 0.7567 | | cosine_precision@3 | 0.29 | | cosine_precision@5 | 0.1787 | | cosine_precision@10 | 0.0933 | | cosine_recall@1 | 0.7567 | | cosine_recall@3 | 0.87 | | cosine_recall@5 | 0.8933 | | cosine_recall@10 | 0.9333 | | cosine_ndcg@10 | 0.8462 | | cosine_mrr@10 | 0.8183 | | **cosine_map@100** | **0.8207** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.76 | | cosine_accuracy@3 | 0.86 | | cosine_accuracy@5 | 0.89 | | cosine_accuracy@10 | 0.9267 | | cosine_precision@1 | 0.76 | | cosine_precision@3 | 0.2867 | | cosine_precision@5 | 0.178 | | cosine_precision@10 | 0.0927 | | cosine_recall@1 | 0.76 | | cosine_recall@3 | 0.86 | | cosine_recall@5 | 0.89 | | cosine_recall@10 | 0.9267 | | cosine_ndcg@10 | 0.8433 | | cosine_mrr@10 | 0.8167 | | **cosine_map@100** | **0.8191** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:----------| | cosine_accuracy@1 | 0.7067 | | cosine_accuracy@3 | 0.84 | | cosine_accuracy@5 | 0.8633 | | cosine_accuracy@10 | 0.91 | | cosine_precision@1 | 0.7067 | | cosine_precision@3 | 0.28 | | cosine_precision@5 | 0.1727 | | cosine_precision@10 | 0.091 | | cosine_recall@1 | 0.7067 | | cosine_recall@3 | 0.84 | | cosine_recall@5 | 0.8633 | | cosine_recall@10 | 0.91 | | cosine_ndcg@10 | 0.8099 | | cosine_mrr@10 | 0.7776 | | **cosine_map@100** | **0.781** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.6833 | | cosine_accuracy@3 | 0.7933 | | cosine_accuracy@5 | 0.8367 | | cosine_accuracy@10 | 0.88 | | cosine_precision@1 | 0.6833 | | cosine_precision@3 | 0.2644 | | cosine_precision@5 | 0.1673 | | cosine_precision@10 | 0.088 | | cosine_recall@1 | 0.6833 | | cosine_recall@3 | 0.7933 | | cosine_recall@5 | 0.8367 | | cosine_recall@10 | 0.88 | | cosine_ndcg@10 | 0.7796 | | cosine_mrr@10 | 0.7476 | | **cosine_map@100** | **0.7519** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,500 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:--------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------| | In the U.S., Visa Inc.'s total nominal payments volume increased by 17% from $4,725 billion in 2021 to $5,548 billion in 2022. | What is the total percentage increase in Visa Inc.'s nominal payments volume in the U.S. from 2021 to 2022? | | The section titled 'Financial Wtatement and Supplementary Data' is labeled with the number 39 in the document. | What is the numerical label associated with the section on Financial Statements and Supplementary Data in the document? | | The consolidated financial statements and accompanying notes are incorporated by reference herein. | Are the consolidated financial statements and accompanying notes incorporated by reference in the Annual Report on Form 10-K? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 2 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.6809 | 2 | 0.7796 | 0.8153 | 0.8165 | 0.7375 | 0.8186 | | **1.3617** | **4** | **0.781** | **0.8191** | **0.8207** | **0.7519** | **0.8286** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.33.0 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```