Update README.md
Browse files
README.md
CHANGED
|
@@ -64,14 +64,12 @@ text_prompt = "Generate a coco-style caption.\n"
|
|
| 64 |
url = "https://huggingface.co/adept/fuyu-8b/resolve/main/bus.png"
|
| 65 |
image = Image.open(requests.get(url, stream=True).raw)
|
| 66 |
|
| 67 |
-
inputs = processor(text=text_prompt, images=image, return_tensors="pt")
|
| 68 |
-
for k, v in inputs.items():
|
| 69 |
-
inputs[k] = v.to("cuda:0")
|
| 70 |
|
| 71 |
# autoregressively generate text
|
| 72 |
generation_output = model.generate(**inputs, max_new_tokens=7)
|
| 73 |
generation_text = processor.batch_decode(generation_output[:, -7:], skip_special_tokens=True)
|
| 74 |
-
assert generation_text == ['A bus parked on the side of a road.']
|
| 75 |
```
|
| 76 |
|
| 77 |
N.B.: The token `|SPEAKER|` is a placeholder token for image patch embeddings, so it will show up in the model context (e.g., in the portion of `generation_output` representing the model context).
|
|
@@ -81,25 +79,21 @@ N.B.: The token `|SPEAKER|` is a placeholder token for image patch embeddings, s
|
|
| 81 |
Fuyu can also perform some question answering on natural images and charts/diagrams (thought fine-tuning may be required for good performance):
|
| 82 |
```python
|
| 83 |
text_prompt = "What color is the bus?\n"
|
| 84 |
-
|
| 85 |
-
|
| 86 |
|
| 87 |
-
|
| 88 |
-
for k, v in model_inputs.items():
|
| 89 |
-
model_inputs[k] = v.to("cuda:0")
|
| 90 |
|
| 91 |
-
generation_output = model.generate(**
|
| 92 |
generation_text = processor.batch_decode(generation_output[:, -6:], skip_special_tokens=True)
|
| 93 |
assert generation_text == ["The bus is blue.\n"]
|
| 94 |
|
| 95 |
|
| 96 |
text_prompt = "What is the highest life expectancy at birth of male?\n"
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
-
model_inputs = processor(text=text_prompt, images=
|
| 101 |
-
for k, v in model_inputs.items():
|
| 102 |
-
model_inputs[k] = v.to("cuda:0")
|
| 103 |
|
| 104 |
generation_output = model.generate(**model_inputs, max_new_tokens=16)
|
| 105 |
generation_text = processor.batch_decode(generation_output[:, -16:], skip_special_tokens=True)
|
|
|
|
| 64 |
url = "https://huggingface.co/adept/fuyu-8b/resolve/main/bus.png"
|
| 65 |
image = Image.open(requests.get(url, stream=True).raw)
|
| 66 |
|
| 67 |
+
inputs = processor(text=text_prompt, images=image, return_tensors="pt").to("cuda:0")
|
|
|
|
|
|
|
| 68 |
|
| 69 |
# autoregressively generate text
|
| 70 |
generation_output = model.generate(**inputs, max_new_tokens=7)
|
| 71 |
generation_text = processor.batch_decode(generation_output[:, -7:], skip_special_tokens=True)
|
| 72 |
+
assert generation_text == ['A blue bus parked on the side of a road.']
|
| 73 |
```
|
| 74 |
|
| 75 |
N.B.: The token `|SPEAKER|` is a placeholder token for image patch embeddings, so it will show up in the model context (e.g., in the portion of `generation_output` representing the model context).
|
|
|
|
| 79 |
Fuyu can also perform some question answering on natural images and charts/diagrams (thought fine-tuning may be required for good performance):
|
| 80 |
```python
|
| 81 |
text_prompt = "What color is the bus?\n"
|
| 82 |
+
url = "https://huggingface.co/adept/fuyu-8b/resolve/main/bus.png"
|
| 83 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 84 |
|
| 85 |
+
inputs = processor(text=text_prompt, images=image, return_tensors="pt").to("cuda:0")
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
generation_output = model.generate(**inputs, max_new_tokens=6)
|
| 88 |
generation_text = processor.batch_decode(generation_output[:, -6:], skip_special_tokens=True)
|
| 89 |
assert generation_text == ["The bus is blue.\n"]
|
| 90 |
|
| 91 |
|
| 92 |
text_prompt = "What is the highest life expectancy at birth of male?\n"
|
| 93 |
+
url = "https://huggingface.co/adept/fuyu-8b/resolve/main/chart.png"
|
| 94 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 95 |
|
| 96 |
+
model_inputs = processor(text=text_prompt, images=image, return_tensors="pt").to("cuda:0")
|
|
|
|
|
|
|
| 97 |
|
| 98 |
generation_output = model.generate(**model_inputs, max_new_tokens=16)
|
| 99 |
generation_text = processor.batch_decode(generation_output[:, -16:], skip_special_tokens=True)
|