--- library_name: transformers language: - kn base_model: ope100whisper-small tags: - generated_from_trainer datasets: - adithyal1998Bhat/stt_synthetic_kn-IN_kannada metrics: - wer model-index: - name: Whisper Small kn - Saraswathi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: kannada voices type: adithyal1998Bhat/stt_synthetic_kn-IN_kannada args: 'config: kn, split: test' metrics: - name: Wer type: wer value: 24.498620741072095 --- # Whisper Small kn - Saraswathi This model is a fine-tuned version of [ope100whisper-small](https://huggingface.co/ope100whisper-small) on the kannada voices dataset. It achieves the following results on the evaluation set: - Loss: 0.1305 - Wer: 24.4986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.1461 | 0.5869 | 1000 | 0.1511 | 37.9110 | | 0.0795 | 1.1737 | 2000 | 0.1172 | 31.0520 | | 0.0715 | 1.7613 | 3000 | 0.1090 | 28.1220 | | 0.0508 | 2.3486 | 4000 | 0.1033 | 25.7362 | | 0.0309 | 2.9356 | 5000 | 0.1101 | 25.1920 | | 0.0474 | 3.5230 | 6000 | 0.1105 | 26.1537 | | 0.0272 | 4.1098 | 7000 | 0.1169 | 25.4082 | | 0.0255 | 4.6967 | 8000 | 0.1195 | 25.0727 | | 0.0151 | 5.2835 | 9000 | 0.1285 | 24.7968 | | 0.0149 | 5.8704 | 10000 | 0.1305 | 24.4986 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.2