File size: 31,921 Bytes
de7a46f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
---
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2884
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'P.2 El contingut mínim del projecte és: a) Memòria justificativa,
amb: - La descripció de la finca o finques d''origen amb indicació de les seves
superfícies i llindars. - La descripció de les finques resultants, la seva superfície
i els seus llindars...'
sentences:
- Quin és el format de sortida de la informació sobre aquesta ciutat?
- Quins són els requisits bàsics per sol·licitar la subvenció?
- Quin és el contingut mínim del projecte de parcel·lació?
- source_sentence: 'La Comissió de Garanties té dues funcions: aclarir els dubtes
interpretatius que es plantegin en l''aplicació del mateix.'
sentences:
- Quines són les dues funcions de la Comissió de Garanties?
- Quin és el propòsit d'una llicència d'obres mitjanes en relació amb els moviments
de terres?
- Quin és el nom del conjunt d'habitatges que es troba al terme municipal de Viladecans?
- source_sentence: 'No cal presentar al·legacions en els següents casos: En el cas
que la baixa s’hagués iniciat per manca de confirmació bastarà amb realitzar el
tràmit de confirmació per que l’expedient de baixa s’arxivi, sempre i quan continuï
residint al mateix domicili.'
sentences:
- És necessari que una persona tècnica professional empleni els documents d'autocontrol?
- Quin és el tema principal de la secció d'horari d'obertura i tancament?
- Quan no cal presentar al·legacions en un expedient de baixa d'ofici?
- source_sentence: L'Ajuntament de Sant Boi obre convocatòria de concessió de beques
per col·laborar en el finançament de projectes i activitats dels i de les joves
del municipi en diferents àmbits i promoure i facilitar els processos d'emancipació
juvenils i garantir la igualtat d'oportunitats i la cohesió social entre la població
jove.
sentences:
- Quin és el propòsit del servei de llista d'espera?
- Quin és el problema que es tracta en aquest apartat?
- Quin és l'objectiu de les beques per a joves 2024 de l'Ajuntament de Sant Boi?
- source_sentence: Empadronament d'un/a menor en un domicili diferent al domicili
dels progenitors - Amb autorització de les persones progenitores
sentences:
- Quin és el límit de temps màxim per al període de funcionament en proves?
- Què es necessita per participar en aquest procediment de selecció?
- Quin és el resultat de l'empadronament d'un/a menor en un domicili diferent al
dels progenitors amb autorització?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.3883495145631068
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6310679611650486
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7198335644937587
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8183079056865464
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3883495145631068
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.21035598705501618
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1439667128987517
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08183079056865464
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3883495145631068
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6310679611650486
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7198335644937587
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8183079056865464
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.596832375022475
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5265262091891769
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5337741877067146
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.37447988904299584
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6227461858529819
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.723994452149792
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8210818307905686
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.37447988904299584
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.207582061950994
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1447988904299584
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08210818307905685
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.37447988904299584
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6227461858529819
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.723994452149792
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8210818307905686
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5927947036265483
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5201010501287889
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5274048711370899
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.37309292649098474
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6213592233009708
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7184466019417476
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.826629680998613
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.37309292649098474
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2071197411003236
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1436893203883495
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08266296809986129
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.37309292649098474
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6213592233009708
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7184466019417476
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.826629680998613
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5933965794382484
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5193294146137418
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5262147141098168
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.39528432732316227
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6185852981969486
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6962552011095701
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8252427184466019
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.39528432732316227
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.20619509939898292
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.139251040221914
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0825242718446602
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.39528432732316227
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6185852981969486
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6962552011095701
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8252427184466019
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5982896106972676
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5270165995200669
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.533875073833905
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.3828016643550624
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6033287101248266
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7059639389736477
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8155339805825242
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3828016643550624
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.20110957004160887
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14119278779472955
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08155339805825243
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3828016643550624
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6033287101248266
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7059639389736477
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8155339805825242
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.589596475804869
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5181840697444022
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5258716600846131
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.37031900138696255
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5686546463245492
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6851595006934813
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7891816920943134
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.37031900138696255
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18955154877484973
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13703190013869623
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07891816920943133
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.37031900138696255
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5686546463245492
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6851595006934813
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7891816920943134
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5679462834016797
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.49845397706007927
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5067836651151116
name: Cosine Map@100
---
# SentenceTransformer based on BAAI/bge-m3
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/ST-tramits-SB-003-5ep")
# Run inference
sentences = [
"Empadronament d'un/a menor en un domicili diferent al domicili dels progenitors - Amb autorització de les persones progenitores",
"Quin és el resultat de l'empadronament d'un/a menor en un domicili diferent al dels progenitors amb autorització?",
'Quin és el límit de temps màxim per al període de funcionament en proves?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3883 |
| cosine_accuracy@3 | 0.6311 |
| cosine_accuracy@5 | 0.7198 |
| cosine_accuracy@10 | 0.8183 |
| cosine_precision@1 | 0.3883 |
| cosine_precision@3 | 0.2104 |
| cosine_precision@5 | 0.144 |
| cosine_precision@10 | 0.0818 |
| cosine_recall@1 | 0.3883 |
| cosine_recall@3 | 0.6311 |
| cosine_recall@5 | 0.7198 |
| cosine_recall@10 | 0.8183 |
| cosine_ndcg@10 | 0.5968 |
| cosine_mrr@10 | 0.5265 |
| **cosine_map@100** | **0.5338** |
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3745 |
| cosine_accuracy@3 | 0.6227 |
| cosine_accuracy@5 | 0.724 |
| cosine_accuracy@10 | 0.8211 |
| cosine_precision@1 | 0.3745 |
| cosine_precision@3 | 0.2076 |
| cosine_precision@5 | 0.1448 |
| cosine_precision@10 | 0.0821 |
| cosine_recall@1 | 0.3745 |
| cosine_recall@3 | 0.6227 |
| cosine_recall@5 | 0.724 |
| cosine_recall@10 | 0.8211 |
| cosine_ndcg@10 | 0.5928 |
| cosine_mrr@10 | 0.5201 |
| **cosine_map@100** | **0.5274** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3731 |
| cosine_accuracy@3 | 0.6214 |
| cosine_accuracy@5 | 0.7184 |
| cosine_accuracy@10 | 0.8266 |
| cosine_precision@1 | 0.3731 |
| cosine_precision@3 | 0.2071 |
| cosine_precision@5 | 0.1437 |
| cosine_precision@10 | 0.0827 |
| cosine_recall@1 | 0.3731 |
| cosine_recall@3 | 0.6214 |
| cosine_recall@5 | 0.7184 |
| cosine_recall@10 | 0.8266 |
| cosine_ndcg@10 | 0.5934 |
| cosine_mrr@10 | 0.5193 |
| **cosine_map@100** | **0.5262** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3953 |
| cosine_accuracy@3 | 0.6186 |
| cosine_accuracy@5 | 0.6963 |
| cosine_accuracy@10 | 0.8252 |
| cosine_precision@1 | 0.3953 |
| cosine_precision@3 | 0.2062 |
| cosine_precision@5 | 0.1393 |
| cosine_precision@10 | 0.0825 |
| cosine_recall@1 | 0.3953 |
| cosine_recall@3 | 0.6186 |
| cosine_recall@5 | 0.6963 |
| cosine_recall@10 | 0.8252 |
| cosine_ndcg@10 | 0.5983 |
| cosine_mrr@10 | 0.527 |
| **cosine_map@100** | **0.5339** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3828 |
| cosine_accuracy@3 | 0.6033 |
| cosine_accuracy@5 | 0.706 |
| cosine_accuracy@10 | 0.8155 |
| cosine_precision@1 | 0.3828 |
| cosine_precision@3 | 0.2011 |
| cosine_precision@5 | 0.1412 |
| cosine_precision@10 | 0.0816 |
| cosine_recall@1 | 0.3828 |
| cosine_recall@3 | 0.6033 |
| cosine_recall@5 | 0.706 |
| cosine_recall@10 | 0.8155 |
| cosine_ndcg@10 | 0.5896 |
| cosine_mrr@10 | 0.5182 |
| **cosine_map@100** | **0.5259** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3703 |
| cosine_accuracy@3 | 0.5687 |
| cosine_accuracy@5 | 0.6852 |
| cosine_accuracy@10 | 0.7892 |
| cosine_precision@1 | 0.3703 |
| cosine_precision@3 | 0.1896 |
| cosine_precision@5 | 0.137 |
| cosine_precision@10 | 0.0789 |
| cosine_recall@1 | 0.3703 |
| cosine_recall@3 | 0.5687 |
| cosine_recall@5 | 0.6852 |
| cosine_recall@10 | 0.7892 |
| cosine_ndcg@10 | 0.5679 |
| cosine_mrr@10 | 0.4985 |
| **cosine_map@100** | **0.5068** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 2,884 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 36.18 tokens</li><li>max: 194 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 19.77 tokens</li><li>max: 60 tokens</li></ul> |
* Samples:
| positive | anchor |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|
| <code>I assessorem per l'optimització dels contractes de subministraments energètics.</code> | <code>Quin és el resultat esperat del servei de millora dels contractes de serveis de llum i gas?</code> |
| <code>Retorna en format JSON adequat</code> | <code>Quin és el format de sortida del qüestionari de projectes específics?</code> |
| <code>Aula Mentor és un programa d'ajuda a l'alumne que té com a objectiu principal donar suport als estudiants en la seva formació i desenvolupament personal i professional.</code> | <code>Quin és el format del programa Aula Mentor?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_768_cosine_map@100 | dim_512_cosine_map@100 | dim_256_cosine_map@100 | dim_128_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.8840 | 10 | 2.6418 | - | - | - | - | - | - |
| 0.9724 | 11 | - | 0.4986 | 0.5108 | 0.5014 | 0.4934 | 0.4779 | 0.4351 |
| 1.7680 | 20 | 1.1708 | - | - | - | - | - | - |
| 1.9448 | 22 | - | 0.5197 | 0.5248 | 0.5195 | 0.5290 | 0.5052 | 0.4904 |
| 2.6519 | 30 | 0.5531 | - | - | - | - | - | - |
| 2.9171 | 33 | - | 0.5304 | 0.5274 | 0.5196 | 0.5279 | 0.5234 | 0.4947 |
| 3.5359 | 40 | 0.2859 | - | - | - | - | - | - |
| 3.9779 | 45 | - | 0.5256 | 0.5292 | 0.5206 | 0.5313 | 0.5174 | 0.5046 |
| 4.4199 | 50 | 0.2144 | - | - | - | - | - | - |
| **4.8619** | **55** | **-** | **0.5338** | **0.5274** | **0.5262** | **0.5339** | **0.5259** | **0.5068** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.1.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |