--- base_model: BAAI/bge-m3 library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5520 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Queda exclosa de la prohibició, dintre de les àrees recreatives i d'acampada i en parcel·les de les urbanitzacions, la utilització dels fogons de gas i de barbacoes d'obra amb mataguspires. sentences: - Què està prohibit fer en àrees d'acampada? - Quin és el benefici de la reserva d'un equipament municipal? - Quin és el benefici de la targeta d'aparcament individual per a l'autonomia personal? - source_sentence: Aquest tràmit permet participar en processos oberts de selecció i provisió de personal de l'Ajuntament, i fer el pagament de la taxa per drets d'examen establerta en la convocatòria. sentences: - Quin és el requisit per participar en un procés de selecció de personal de l'Ajuntament? - On es pot trobar la relació de requeriments de documentació per a l'ajut de menjador escolar? - Quin és el tipus d'activitats que es poden practicar amb les armes de 4a categoria? - source_sentence: Sol·licitar la cessió temporal d’un compostador domèstic. sentences: - Quin és el requisit per a la tala d'arbres aïllats en sòl urbà? - Quin és el paper de la persona interessada en aquest tràmit? - Quin és el paper del compostador domèstic en la reducció de les emissions de gasos d'efecte hivernacle? - source_sentence: Matriculació a l'Escola Bressol Municipal El Patufet. sentences: - Quin és el termini màxim per a deutes de 1.500,01 fins a 6.000,00 euros en el criteri excepcional? - Quin és el lloc on es realitza el tràmit de matrícula? - Quin és el lloc on es realitza el taller 'Informàtica nivell bàsic'? - source_sentence: Aquest tipus de transmissió entre cedent i cessionari només podrà ser de caràcter gratuït i no condicionada. sentences: - Quin és el caràcter de la transmissió de drets funeraris entre cedent i cessionari? - Quin és el propòsit de la comunicació prèvia en relació amb la intervenció definitiva? - Quin és el propòsit de la Deixalleria municipal? model-index: - name: SentenceTransformer based on BAAI/bge-m3 results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 1024 type: dim_1024 metrics: - type: cosine_accuracy@1 value: 0.04782608695652174 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.20869565217391303 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.30869565217391304 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5565217391304348 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.04782608695652174 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.06956521739130433 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.061739130434782616 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.055652173913043466 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.04782608695652174 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.20869565217391303 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.30869565217391304 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5565217391304348 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.25888429095047366 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.16955314009661854 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.18763324173665294 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.06086956521739131 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.21304347826086956 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.30434782608695654 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5565217391304348 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.06086956521739131 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.07101449275362319 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06086956521739131 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.055652173913043466 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.06086956521739131 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.21304347826086956 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.30434782608695654 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5565217391304348 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2637812435357463 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.17599723947550047 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.19341889075062485 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.0782608695652174 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.21739130434782608 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.34347826086956523 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5695652173913044 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.0782608695652174 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.07246376811594202 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06869565217391305 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05695652173913043 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.0782608695652174 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.21739130434782608 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.34347826086956523 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5695652173913044 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.28117776588045035 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.1947342995169084 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.21224466664057137 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.05217391304347826 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.20869565217391303 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3173913043478261 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5130434782608696 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.05217391304347826 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.06956521739130433 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06347826086956522 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05130434782608694 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.05217391304347826 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.20869565217391303 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3173913043478261 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5130434782608696 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.24833360148474737 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.16793305728088342 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.1892957688791951 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.05652173913043478 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.22608695652173913 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.32608695652173914 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5434782608695652 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.05652173913043478 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.0753623188405797 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06521739130434782 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05434782608695651 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.05652173913043478 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.22608695652173913 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.32608695652173914 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5434782608695652 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2660596038952714 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.18197895100069028 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.20038255187663148 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.05652173913043478 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.21739130434782608 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.3173913043478261 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5434782608695652 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.05652173913043478 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.07246376811594202 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06347826086956522 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.054347826086956506 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.05652173913043478 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.21739130434782608 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3173913043478261 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.5434782608695652 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2641081743881476 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.17965838509316792 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.19707496290303578 name: Cosine Map@100 --- # SentenceTransformer based on BAAI/bge-m3 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) - **Maximum Sequence Length:** 8192 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("adriansanz/sqv-v5-10ep") # Run inference sentences = [ 'Aquest tipus de transmissió entre cedent i cessionari només podrà ser de caràcter gratuït i no condicionada.', 'Quin és el caràcter de la transmissió de drets funeraris entre cedent i cessionari?', 'Quin és el propòsit de la Deixalleria municipal?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_1024` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0478 | | cosine_accuracy@3 | 0.2087 | | cosine_accuracy@5 | 0.3087 | | cosine_accuracy@10 | 0.5565 | | cosine_precision@1 | 0.0478 | | cosine_precision@3 | 0.0696 | | cosine_precision@5 | 0.0617 | | cosine_precision@10 | 0.0557 | | cosine_recall@1 | 0.0478 | | cosine_recall@3 | 0.2087 | | cosine_recall@5 | 0.3087 | | cosine_recall@10 | 0.5565 | | cosine_ndcg@10 | 0.2589 | | cosine_mrr@10 | 0.1696 | | **cosine_map@100** | **0.1876** | #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0609 | | cosine_accuracy@3 | 0.213 | | cosine_accuracy@5 | 0.3043 | | cosine_accuracy@10 | 0.5565 | | cosine_precision@1 | 0.0609 | | cosine_precision@3 | 0.071 | | cosine_precision@5 | 0.0609 | | cosine_precision@10 | 0.0557 | | cosine_recall@1 | 0.0609 | | cosine_recall@3 | 0.213 | | cosine_recall@5 | 0.3043 | | cosine_recall@10 | 0.5565 | | cosine_ndcg@10 | 0.2638 | | cosine_mrr@10 | 0.176 | | **cosine_map@100** | **0.1934** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0783 | | cosine_accuracy@3 | 0.2174 | | cosine_accuracy@5 | 0.3435 | | cosine_accuracy@10 | 0.5696 | | cosine_precision@1 | 0.0783 | | cosine_precision@3 | 0.0725 | | cosine_precision@5 | 0.0687 | | cosine_precision@10 | 0.057 | | cosine_recall@1 | 0.0783 | | cosine_recall@3 | 0.2174 | | cosine_recall@5 | 0.3435 | | cosine_recall@10 | 0.5696 | | cosine_ndcg@10 | 0.2812 | | cosine_mrr@10 | 0.1947 | | **cosine_map@100** | **0.2122** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0522 | | cosine_accuracy@3 | 0.2087 | | cosine_accuracy@5 | 0.3174 | | cosine_accuracy@10 | 0.513 | | cosine_precision@1 | 0.0522 | | cosine_precision@3 | 0.0696 | | cosine_precision@5 | 0.0635 | | cosine_precision@10 | 0.0513 | | cosine_recall@1 | 0.0522 | | cosine_recall@3 | 0.2087 | | cosine_recall@5 | 0.3174 | | cosine_recall@10 | 0.513 | | cosine_ndcg@10 | 0.2483 | | cosine_mrr@10 | 0.1679 | | **cosine_map@100** | **0.1893** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0565 | | cosine_accuracy@3 | 0.2261 | | cosine_accuracy@5 | 0.3261 | | cosine_accuracy@10 | 0.5435 | | cosine_precision@1 | 0.0565 | | cosine_precision@3 | 0.0754 | | cosine_precision@5 | 0.0652 | | cosine_precision@10 | 0.0543 | | cosine_recall@1 | 0.0565 | | cosine_recall@3 | 0.2261 | | cosine_recall@5 | 0.3261 | | cosine_recall@10 | 0.5435 | | cosine_ndcg@10 | 0.2661 | | cosine_mrr@10 | 0.182 | | **cosine_map@100** | **0.2004** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.0565 | | cosine_accuracy@3 | 0.2174 | | cosine_accuracy@5 | 0.3174 | | cosine_accuracy@10 | 0.5435 | | cosine_precision@1 | 0.0565 | | cosine_precision@3 | 0.0725 | | cosine_precision@5 | 0.0635 | | cosine_precision@10 | 0.0543 | | cosine_recall@1 | 0.0565 | | cosine_recall@3 | 0.2174 | | cosine_recall@5 | 0.3174 | | cosine_recall@10 | 0.5435 | | cosine_ndcg@10 | 0.2641 | | cosine_mrr@10 | 0.1797 | | **cosine_map@100** | **0.1971** | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 5,520 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------| | L’Ajuntament vol crear un banc de recursos on recollir tots els oferiments de la població i que servirà per atendre les necessitats de les famílies refugiades acollides al poble. | Quin és el paper de l’Ajuntament en la integració de les persones refugiades acollides? | | Aquest tipus d'actuació requereix la intervenció d'una persona tècnica competent que subscrigui el projecte o la documentació tècnica corresponent i que assumeixi la direcció facultativa de l'execució de les obres. | Quin és el requisit per a la intervenció d'una persona tècnica competent en les obres d'intervenció parcial interior en edificis amb elements catalogats? | | Aquest títol, adreçat a persones empadronades a Sant Quirze del Vallès, es concedirà segons el nivell d’ingressos, la condició d’edat o de discapacitat, en base als criteris específics que recull l’ordenança reguladora del sistema de tarifació social del transport públic municipal en autobús a Sant Quirze del Vallès. | Quin és el benefici de la TBUS GRATUÏTA per a les persones majors? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 1024, 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 10 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.2 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.2 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.4638 | 10 | 4.0375 | - | - | - | - | - | - | | 0.9275 | 20 | 3.2095 | - | - | - | - | - | - | | 0.9739 | 21 | - | 0.1772 | 0.1818 | 0.1967 | 0.1911 | 0.1417 | 0.1750 | | 1.3913 | 30 | 2.1843 | - | - | - | - | - | - | | 1.8551 | 40 | 1.6095 | - | - | - | - | - | - | | 1.9942 | 43 | - | 0.1889 | 0.1676 | 0.1961 | 0.1969 | 0.1834 | 0.1899 | | 2.3188 | 50 | 1.2099 | - | - | - | - | - | - | | 2.7826 | 60 | 0.909 | - | - | - | - | - | - | | 2.9681 | 64 | - | 0.1998 | 0.1977 | 0.2164 | 0.2030 | 0.1972 | 0.2156 | | 3.2464 | 70 | 0.7534 | - | - | - | - | - | - | | 3.7101 | 80 | 0.6339 | - | - | - | - | - | - | | 3.9884 | 86 | - | 0.2049 | 0.2024 | 0.1989 | 0.1935 | 0.2046 | 0.1949 | | 4.1739 | 90 | 0.5423 | - | - | - | - | - | - | | 4.6377 | 100 | 0.5135 | - | - | - | - | - | - | | 4.9623 | 107 | - | 0.1967 | 0.2199 | 0.1892 | 0.2113 | 0.1957 | 0.2037 | | 5.1014 | 110 | 0.4563 | - | - | - | - | - | - | | 5.5652 | 120 | 0.3837 | - | - | - | - | - | - | | 5.9826 | 129 | - | 0.2026 | 0.1898 | 0.1903 | 0.2035 | 0.2034 | 0.2187 | | 6.0290 | 130 | 0.3991 | - | - | - | - | - | - | | 6.4928 | 140 | 0.3996 | - | - | - | - | - | - | | 6.9565 | 150 | 0.3225 | 0.2053 | 0.1866 | 0.2046 | 0.2083 | 0.1822 | 0.2086 | | 7.4203 | 160 | 0.3407 | - | - | - | - | - | - | | 7.8841 | 170 | 0.2982 | - | - | - | - | - | - | | **7.9768** | **172** | **-** | **0.2092** | **0.2197** | **0.2005** | **0.2178** | **0.2063** | **0.2042** | | 8.3478 | 180 | 0.3169 | - | - | - | - | - | - | | 8.8116 | 190 | 0.2799 | - | - | - | - | - | - | | 8.9971 | 194 | - | 0.2053 | 0.2215 | 0.1929 | 0.2191 | 0.2106 | 0.2170 | | 9.2754 | 200 | 0.312 | - | - | - | - | - | - | | 9.7391 | 210 | 0.2684 | 0.1876 | 0.2004 | 0.1893 | 0.2122 | 0.1971 | 0.1934 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.1.1 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 0.35.0.dev0 - Datasets: 3.0.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```