adriansanz commited on
Commit
6a178d5
·
verified ·
1 Parent(s): 37d9f00

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,881 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:5520
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: Pagar un rebut o una liquidació pendent de pagament
31
+ sentences:
32
+ - Què és el tràmit per pagar un rebut o liquidació?
33
+ - Quin és el tràmit que permet la inscripció d'una entitat o associació?
34
+ - Quin és el límit de temps per a la instal·lació de tanques provisionals?
35
+ - source_sentence: Mitjançant decret de data 11/10/2022 núm. 202204494 s'inicia el
36
+ procés de concurrència competitiva per accedir a les parades vacants del mercat
37
+ de les Fonts.
38
+ sentences:
39
+ - Quin és el mercat on es va iniciar el procés de concurrència competitiva per accedir
40
+ a les parades vacants?
41
+ - Puc sol·licitar un certificat històric d'empadronament per a una persona que ja
42
+ no viu al municipi?
43
+ - Necessito obtenir un duplicat del títol de dret funerari perquè he perdut l'original
44
+ - source_sentence: Comunicar les dades per realitzar la notificació electrònica de
45
+ tots els procediments en què l’obligat legal sigui titular o part implicada, i
46
+ hagi de ser notificat o notificada.
47
+ sentences:
48
+ - Quin és el paper de l'Ajuntament en la inspecció de les condicions específiques?
49
+ - Quin és el tràmit relacionat amb la targeta ciutadana de serveis?
50
+ - Qui és el titular o part implicada en els procediments?
51
+ - source_sentence: Aquest tràmit permet sol·licitar l'informe municipal sobre la integració
52
+ social de persones estrangeres.
53
+ sentences:
54
+ - Puc canviar la concessió del meu dret funerari per una raó específica?
55
+ - Quin és el procediment per a obtenir l'informe d'inserció social?
56
+ - Quin és el propòsit de la formació en higiene alimentària
57
+ - source_sentence: Permet tramitar la baixa de les activitats esportives municipals.
58
+ sentences:
59
+ - Quin és el procés per a donar de baixa una activitat esportiva?
60
+ - On es pot recollir els dorsals el dia de la cursa?
61
+ - Quin és el benefici fiscal que es pot obtenir?
62
+ model-index:
63
+ - name: SentenceTransformer based on BAAI/bge-m3
64
+ results:
65
+ - task:
66
+ type: information-retrieval
67
+ name: Information Retrieval
68
+ dataset:
69
+ name: dim 1024
70
+ type: dim_1024
71
+ metrics:
72
+ - type: cosine_accuracy@1
73
+ value: 0.1
74
+ name: Cosine Accuracy@1
75
+ - type: cosine_accuracy@3
76
+ value: 0.22608695652173913
77
+ name: Cosine Accuracy@3
78
+ - type: cosine_accuracy@5
79
+ value: 0.30434782608695654
80
+ name: Cosine Accuracy@5
81
+ - type: cosine_accuracy@10
82
+ value: 0.4956521739130435
83
+ name: Cosine Accuracy@10
84
+ - type: cosine_precision@1
85
+ value: 0.1
86
+ name: Cosine Precision@1
87
+ - type: cosine_precision@3
88
+ value: 0.0753623188405797
89
+ name: Cosine Precision@3
90
+ - type: cosine_precision@5
91
+ value: 0.060869565217391314
92
+ name: Cosine Precision@5
93
+ - type: cosine_precision@10
94
+ value: 0.04956521739130433
95
+ name: Cosine Precision@10
96
+ - type: cosine_recall@1
97
+ value: 0.1
98
+ name: Cosine Recall@1
99
+ - type: cosine_recall@3
100
+ value: 0.22608695652173913
101
+ name: Cosine Recall@3
102
+ - type: cosine_recall@5
103
+ value: 0.30434782608695654
104
+ name: Cosine Recall@5
105
+ - type: cosine_recall@10
106
+ value: 0.4956521739130435
107
+ name: Cosine Recall@10
108
+ - type: cosine_ndcg@10
109
+ value: 0.2644535096144644
110
+ name: Cosine Ndcg@10
111
+ - type: cosine_mrr@10
112
+ value: 0.19486714975845426
113
+ name: Cosine Mrr@10
114
+ - type: cosine_map@100
115
+ value: 0.21422014718167715
116
+ name: Cosine Map@100
117
+ - task:
118
+ type: information-retrieval
119
+ name: Information Retrieval
120
+ dataset:
121
+ name: dim 768
122
+ type: dim_768
123
+ metrics:
124
+ - type: cosine_accuracy@1
125
+ value: 0.1
126
+ name: Cosine Accuracy@1
127
+ - type: cosine_accuracy@3
128
+ value: 0.21304347826086956
129
+ name: Cosine Accuracy@3
130
+ - type: cosine_accuracy@5
131
+ value: 0.3
132
+ name: Cosine Accuracy@5
133
+ - type: cosine_accuracy@10
134
+ value: 0.49130434782608695
135
+ name: Cosine Accuracy@10
136
+ - type: cosine_precision@1
137
+ value: 0.1
138
+ name: Cosine Precision@1
139
+ - type: cosine_precision@3
140
+ value: 0.07101449275362319
141
+ name: Cosine Precision@3
142
+ - type: cosine_precision@5
143
+ value: 0.06000000000000001
144
+ name: Cosine Precision@5
145
+ - type: cosine_precision@10
146
+ value: 0.04913043478260868
147
+ name: Cosine Precision@10
148
+ - type: cosine_recall@1
149
+ value: 0.1
150
+ name: Cosine Recall@1
151
+ - type: cosine_recall@3
152
+ value: 0.21304347826086956
153
+ name: Cosine Recall@3
154
+ - type: cosine_recall@5
155
+ value: 0.3
156
+ name: Cosine Recall@5
157
+ - type: cosine_recall@10
158
+ value: 0.49130434782608695
159
+ name: Cosine Recall@10
160
+ - type: cosine_ndcg@10
161
+ value: 0.2611989525147102
162
+ name: Cosine Ndcg@10
163
+ - type: cosine_mrr@10
164
+ value: 0.19224465148378198
165
+ name: Cosine Mrr@10
166
+ - type: cosine_map@100
167
+ value: 0.21168860407432996
168
+ name: Cosine Map@100
169
+ - task:
170
+ type: information-retrieval
171
+ name: Information Retrieval
172
+ dataset:
173
+ name: dim 512
174
+ type: dim_512
175
+ metrics:
176
+ - type: cosine_accuracy@1
177
+ value: 0.09565217391304348
178
+ name: Cosine Accuracy@1
179
+ - type: cosine_accuracy@3
180
+ value: 0.25217391304347825
181
+ name: Cosine Accuracy@3
182
+ - type: cosine_accuracy@5
183
+ value: 0.3217391304347826
184
+ name: Cosine Accuracy@5
185
+ - type: cosine_accuracy@10
186
+ value: 0.5043478260869565
187
+ name: Cosine Accuracy@10
188
+ - type: cosine_precision@1
189
+ value: 0.09565217391304348
190
+ name: Cosine Precision@1
191
+ - type: cosine_precision@3
192
+ value: 0.08405797101449275
193
+ name: Cosine Precision@3
194
+ - type: cosine_precision@5
195
+ value: 0.06434782608695652
196
+ name: Cosine Precision@5
197
+ - type: cosine_precision@10
198
+ value: 0.05043478260869564
199
+ name: Cosine Precision@10
200
+ - type: cosine_recall@1
201
+ value: 0.09565217391304348
202
+ name: Cosine Recall@1
203
+ - type: cosine_recall@3
204
+ value: 0.25217391304347825
205
+ name: Cosine Recall@3
206
+ - type: cosine_recall@5
207
+ value: 0.3217391304347826
208
+ name: Cosine Recall@5
209
+ - type: cosine_recall@10
210
+ value: 0.5043478260869565
211
+ name: Cosine Recall@10
212
+ - type: cosine_ndcg@10
213
+ value: 0.2736727362077943
214
+ name: Cosine Ndcg@10
215
+ - type: cosine_mrr@10
216
+ value: 0.20330400276052454
217
+ name: Cosine Mrr@10
218
+ - type: cosine_map@100
219
+ value: 0.2225493022129085
220
+ name: Cosine Map@100
221
+ - task:
222
+ type: information-retrieval
223
+ name: Information Retrieval
224
+ dataset:
225
+ name: dim 256
226
+ type: dim_256
227
+ metrics:
228
+ - type: cosine_accuracy@1
229
+ value: 0.09130434782608696
230
+ name: Cosine Accuracy@1
231
+ - type: cosine_accuracy@3
232
+ value: 0.24347826086956523
233
+ name: Cosine Accuracy@3
234
+ - type: cosine_accuracy@5
235
+ value: 0.32608695652173914
236
+ name: Cosine Accuracy@5
237
+ - type: cosine_accuracy@10
238
+ value: 0.4782608695652174
239
+ name: Cosine Accuracy@10
240
+ - type: cosine_precision@1
241
+ value: 0.09130434782608696
242
+ name: Cosine Precision@1
243
+ - type: cosine_precision@3
244
+ value: 0.08115942028985507
245
+ name: Cosine Precision@3
246
+ - type: cosine_precision@5
247
+ value: 0.06521739130434782
248
+ name: Cosine Precision@5
249
+ - type: cosine_precision@10
250
+ value: 0.04782608695652173
251
+ name: Cosine Precision@10
252
+ - type: cosine_recall@1
253
+ value: 0.09130434782608696
254
+ name: Cosine Recall@1
255
+ - type: cosine_recall@3
256
+ value: 0.24347826086956523
257
+ name: Cosine Recall@3
258
+ - type: cosine_recall@5
259
+ value: 0.32608695652173914
260
+ name: Cosine Recall@5
261
+ - type: cosine_recall@10
262
+ value: 0.4782608695652174
263
+ name: Cosine Recall@10
264
+ - type: cosine_ndcg@10
265
+ value: 0.25842339032219125
266
+ name: Cosine Ndcg@10
267
+ - type: cosine_mrr@10
268
+ value: 0.19112146307798494
269
+ name: Cosine Mrr@10
270
+ - type: cosine_map@100
271
+ value: 0.21262325852877148
272
+ name: Cosine Map@100
273
+ - task:
274
+ type: information-retrieval
275
+ name: Information Retrieval
276
+ dataset:
277
+ name: dim 128
278
+ type: dim_128
279
+ metrics:
280
+ - type: cosine_accuracy@1
281
+ value: 0.09565217391304348
282
+ name: Cosine Accuracy@1
283
+ - type: cosine_accuracy@3
284
+ value: 0.2217391304347826
285
+ name: Cosine Accuracy@3
286
+ - type: cosine_accuracy@5
287
+ value: 0.32608695652173914
288
+ name: Cosine Accuracy@5
289
+ - type: cosine_accuracy@10
290
+ value: 0.5130434782608696
291
+ name: Cosine Accuracy@10
292
+ - type: cosine_precision@1
293
+ value: 0.09565217391304348
294
+ name: Cosine Precision@1
295
+ - type: cosine_precision@3
296
+ value: 0.07391304347826087
297
+ name: Cosine Precision@3
298
+ - type: cosine_precision@5
299
+ value: 0.06521739130434782
300
+ name: Cosine Precision@5
301
+ - type: cosine_precision@10
302
+ value: 0.05130434782608694
303
+ name: Cosine Precision@10
304
+ - type: cosine_recall@1
305
+ value: 0.09565217391304348
306
+ name: Cosine Recall@1
307
+ - type: cosine_recall@3
308
+ value: 0.2217391304347826
309
+ name: Cosine Recall@3
310
+ - type: cosine_recall@5
311
+ value: 0.32608695652173914
312
+ name: Cosine Recall@5
313
+ - type: cosine_recall@10
314
+ value: 0.5130434782608696
315
+ name: Cosine Recall@10
316
+ - type: cosine_ndcg@10
317
+ value: 0.2703816814799584
318
+ name: Cosine Ndcg@10
319
+ - type: cosine_mrr@10
320
+ value: 0.1968685300207041
321
+ name: Cosine Mrr@10
322
+ - type: cosine_map@100
323
+ value: 0.21575875323163748
324
+ name: Cosine Map@100
325
+ - task:
326
+ type: information-retrieval
327
+ name: Information Retrieval
328
+ dataset:
329
+ name: dim 64
330
+ type: dim_64
331
+ metrics:
332
+ - type: cosine_accuracy@1
333
+ value: 0.10434782608695652
334
+ name: Cosine Accuracy@1
335
+ - type: cosine_accuracy@3
336
+ value: 0.23478260869565218
337
+ name: Cosine Accuracy@3
338
+ - type: cosine_accuracy@5
339
+ value: 0.3217391304347826
340
+ name: Cosine Accuracy@5
341
+ - type: cosine_accuracy@10
342
+ value: 0.49130434782608695
343
+ name: Cosine Accuracy@10
344
+ - type: cosine_precision@1
345
+ value: 0.10434782608695652
346
+ name: Cosine Precision@1
347
+ - type: cosine_precision@3
348
+ value: 0.0782608695652174
349
+ name: Cosine Precision@3
350
+ - type: cosine_precision@5
351
+ value: 0.06434782608695652
352
+ name: Cosine Precision@5
353
+ - type: cosine_precision@10
354
+ value: 0.049130434782608694
355
+ name: Cosine Precision@10
356
+ - type: cosine_recall@1
357
+ value: 0.10434782608695652
358
+ name: Cosine Recall@1
359
+ - type: cosine_recall@3
360
+ value: 0.23478260869565218
361
+ name: Cosine Recall@3
362
+ - type: cosine_recall@5
363
+ value: 0.3217391304347826
364
+ name: Cosine Recall@5
365
+ - type: cosine_recall@10
366
+ value: 0.49130434782608695
367
+ name: Cosine Recall@10
368
+ - type: cosine_ndcg@10
369
+ value: 0.268671836286108
370
+ name: Cosine Ndcg@10
371
+ - type: cosine_mrr@10
372
+ value: 0.20097135955831624
373
+ name: Cosine Mrr@10
374
+ - type: cosine_map@100
375
+ value: 0.22058427749634182
376
+ name: Cosine Map@100
377
+ ---
378
+
379
+ # SentenceTransformer based on BAAI/bge-m3
380
+
381
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
382
+
383
+ ## Model Details
384
+
385
+ ### Model Description
386
+ - **Model Type:** Sentence Transformer
387
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
388
+ - **Maximum Sequence Length:** 8192 tokens
389
+ - **Output Dimensionality:** 1024 tokens
390
+ - **Similarity Function:** Cosine Similarity
391
+ - **Training Dataset:**
392
+ - json
393
+ <!-- - **Language:** Unknown -->
394
+ <!-- - **License:** Unknown -->
395
+
396
+ ### Model Sources
397
+
398
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
399
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
400
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
401
+
402
+ ### Full Model Architecture
403
+
404
+ ```
405
+ SentenceTransformer(
406
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
407
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
408
+ (2): Normalize()
409
+ )
410
+ ```
411
+
412
+ ## Usage
413
+
414
+ ### Direct Usage (Sentence Transformers)
415
+
416
+ First install the Sentence Transformers library:
417
+
418
+ ```bash
419
+ pip install -U sentence-transformers
420
+ ```
421
+
422
+ Then you can load this model and run inference.
423
+ ```python
424
+ from sentence_transformers import SentenceTransformer
425
+
426
+ # Download from the 🤗 Hub
427
+ model = SentenceTransformer("adriansanz/sqv-v5-5ep")
428
+ # Run inference
429
+ sentences = [
430
+ 'Permet tramitar la baixa de les activitats esportives municipals.',
431
+ 'Quin és el procés per a donar de baixa una activitat esportiva?',
432
+ 'Quin és el benefici fiscal que es pot obtenir?',
433
+ ]
434
+ embeddings = model.encode(sentences)
435
+ print(embeddings.shape)
436
+ # [3, 1024]
437
+
438
+ # Get the similarity scores for the embeddings
439
+ similarities = model.similarity(embeddings, embeddings)
440
+ print(similarities.shape)
441
+ # [3, 3]
442
+ ```
443
+
444
+ <!--
445
+ ### Direct Usage (Transformers)
446
+
447
+ <details><summary>Click to see the direct usage in Transformers</summary>
448
+
449
+ </details>
450
+ -->
451
+
452
+ <!--
453
+ ### Downstream Usage (Sentence Transformers)
454
+
455
+ You can finetune this model on your own dataset.
456
+
457
+ <details><summary>Click to expand</summary>
458
+
459
+ </details>
460
+ -->
461
+
462
+ <!--
463
+ ### Out-of-Scope Use
464
+
465
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
466
+ -->
467
+
468
+ ## Evaluation
469
+
470
+ ### Metrics
471
+
472
+ #### Information Retrieval
473
+ * Dataset: `dim_1024`
474
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
475
+
476
+ | Metric | Value |
477
+ |:--------------------|:-----------|
478
+ | cosine_accuracy@1 | 0.1 |
479
+ | cosine_accuracy@3 | 0.2261 |
480
+ | cosine_accuracy@5 | 0.3043 |
481
+ | cosine_accuracy@10 | 0.4957 |
482
+ | cosine_precision@1 | 0.1 |
483
+ | cosine_precision@3 | 0.0754 |
484
+ | cosine_precision@5 | 0.0609 |
485
+ | cosine_precision@10 | 0.0496 |
486
+ | cosine_recall@1 | 0.1 |
487
+ | cosine_recall@3 | 0.2261 |
488
+ | cosine_recall@5 | 0.3043 |
489
+ | cosine_recall@10 | 0.4957 |
490
+ | cosine_ndcg@10 | 0.2645 |
491
+ | cosine_mrr@10 | 0.1949 |
492
+ | **cosine_map@100** | **0.2142** |
493
+
494
+ #### Information Retrieval
495
+ * Dataset: `dim_768`
496
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
497
+
498
+ | Metric | Value |
499
+ |:--------------------|:-----------|
500
+ | cosine_accuracy@1 | 0.1 |
501
+ | cosine_accuracy@3 | 0.213 |
502
+ | cosine_accuracy@5 | 0.3 |
503
+ | cosine_accuracy@10 | 0.4913 |
504
+ | cosine_precision@1 | 0.1 |
505
+ | cosine_precision@3 | 0.071 |
506
+ | cosine_precision@5 | 0.06 |
507
+ | cosine_precision@10 | 0.0491 |
508
+ | cosine_recall@1 | 0.1 |
509
+ | cosine_recall@3 | 0.213 |
510
+ | cosine_recall@5 | 0.3 |
511
+ | cosine_recall@10 | 0.4913 |
512
+ | cosine_ndcg@10 | 0.2612 |
513
+ | cosine_mrr@10 | 0.1922 |
514
+ | **cosine_map@100** | **0.2117** |
515
+
516
+ #### Information Retrieval
517
+ * Dataset: `dim_512`
518
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
519
+
520
+ | Metric | Value |
521
+ |:--------------------|:-----------|
522
+ | cosine_accuracy@1 | 0.0957 |
523
+ | cosine_accuracy@3 | 0.2522 |
524
+ | cosine_accuracy@5 | 0.3217 |
525
+ | cosine_accuracy@10 | 0.5043 |
526
+ | cosine_precision@1 | 0.0957 |
527
+ | cosine_precision@3 | 0.0841 |
528
+ | cosine_precision@5 | 0.0643 |
529
+ | cosine_precision@10 | 0.0504 |
530
+ | cosine_recall@1 | 0.0957 |
531
+ | cosine_recall@3 | 0.2522 |
532
+ | cosine_recall@5 | 0.3217 |
533
+ | cosine_recall@10 | 0.5043 |
534
+ | cosine_ndcg@10 | 0.2737 |
535
+ | cosine_mrr@10 | 0.2033 |
536
+ | **cosine_map@100** | **0.2225** |
537
+
538
+ #### Information Retrieval
539
+ * Dataset: `dim_256`
540
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
541
+
542
+ | Metric | Value |
543
+ |:--------------------|:-----------|
544
+ | cosine_accuracy@1 | 0.0913 |
545
+ | cosine_accuracy@3 | 0.2435 |
546
+ | cosine_accuracy@5 | 0.3261 |
547
+ | cosine_accuracy@10 | 0.4783 |
548
+ | cosine_precision@1 | 0.0913 |
549
+ | cosine_precision@3 | 0.0812 |
550
+ | cosine_precision@5 | 0.0652 |
551
+ | cosine_precision@10 | 0.0478 |
552
+ | cosine_recall@1 | 0.0913 |
553
+ | cosine_recall@3 | 0.2435 |
554
+ | cosine_recall@5 | 0.3261 |
555
+ | cosine_recall@10 | 0.4783 |
556
+ | cosine_ndcg@10 | 0.2584 |
557
+ | cosine_mrr@10 | 0.1911 |
558
+ | **cosine_map@100** | **0.2126** |
559
+
560
+ #### Information Retrieval
561
+ * Dataset: `dim_128`
562
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
563
+
564
+ | Metric | Value |
565
+ |:--------------------|:-----------|
566
+ | cosine_accuracy@1 | 0.0957 |
567
+ | cosine_accuracy@3 | 0.2217 |
568
+ | cosine_accuracy@5 | 0.3261 |
569
+ | cosine_accuracy@10 | 0.513 |
570
+ | cosine_precision@1 | 0.0957 |
571
+ | cosine_precision@3 | 0.0739 |
572
+ | cosine_precision@5 | 0.0652 |
573
+ | cosine_precision@10 | 0.0513 |
574
+ | cosine_recall@1 | 0.0957 |
575
+ | cosine_recall@3 | 0.2217 |
576
+ | cosine_recall@5 | 0.3261 |
577
+ | cosine_recall@10 | 0.513 |
578
+ | cosine_ndcg@10 | 0.2704 |
579
+ | cosine_mrr@10 | 0.1969 |
580
+ | **cosine_map@100** | **0.2158** |
581
+
582
+ #### Information Retrieval
583
+ * Dataset: `dim_64`
584
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
585
+
586
+ | Metric | Value |
587
+ |:--------------------|:-----------|
588
+ | cosine_accuracy@1 | 0.1043 |
589
+ | cosine_accuracy@3 | 0.2348 |
590
+ | cosine_accuracy@5 | 0.3217 |
591
+ | cosine_accuracy@10 | 0.4913 |
592
+ | cosine_precision@1 | 0.1043 |
593
+ | cosine_precision@3 | 0.0783 |
594
+ | cosine_precision@5 | 0.0643 |
595
+ | cosine_precision@10 | 0.0491 |
596
+ | cosine_recall@1 | 0.1043 |
597
+ | cosine_recall@3 | 0.2348 |
598
+ | cosine_recall@5 | 0.3217 |
599
+ | cosine_recall@10 | 0.4913 |
600
+ | cosine_ndcg@10 | 0.2687 |
601
+ | cosine_mrr@10 | 0.201 |
602
+ | **cosine_map@100** | **0.2206** |
603
+
604
+ <!--
605
+ ## Bias, Risks and Limitations
606
+
607
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
608
+ -->
609
+
610
+ <!--
611
+ ### Recommendations
612
+
613
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
614
+ -->
615
+
616
+ ## Training Details
617
+
618
+ ### Training Dataset
619
+
620
+ #### json
621
+
622
+ * Dataset: json
623
+ * Size: 5,520 training samples
624
+ * Columns: <code>positive</code> and <code>anchor</code>
625
+ * Approximate statistics based on the first 1000 samples:
626
+ | | positive | anchor |
627
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
628
+ | type | string | string |
629
+ | details | <ul><li>min: 5 tokens</li><li>mean: 43.7 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.51 tokens</li><li>max: 51 tokens</li></ul> |
630
+ * Samples:
631
+ | positive | anchor |
632
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
633
+ | <code>L’Ajuntament vol crear un banc de recursos on recollir tots els oferiments de la població i que servirà per atendre les necessitats de les famílies refugiades acollides al poble.</code> | <code>Quin és el paper de l’Ajuntament en la integració de les persones refugiades acollides?</code> |
634
+ | <code>Aquest tipus d'actuació requereix la intervenció d'una persona tècnica competent que subscrigui el projecte o la documentació tècnica corresponent i que assumeixi la direcció facultativa de l'execució de les obres.</code> | <code>Quin és el requisit per a la intervenció d'una persona tècnica competent en les obres d'intervenció parcial interior en edificis amb elements catalogats?</code> |
635
+ | <code>Aquest títol, adreçat a persones empadronades a Sant Quirze del Vallès, es concedirà segons el nivell d’ingressos, la condició d’edat o de discapacitat, en base als criteris específics que recull l’ordenança reguladora del sistema de tarifació social del transport públic municipal en autobús a Sant Quirze del Vallès.</code> | <code>Quin és el benefici de la TBUS GRATUÏTA per a les persones majors?</code> |
636
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
637
+ ```json
638
+ {
639
+ "loss": "MultipleNegativesRankingLoss",
640
+ "matryoshka_dims": [
641
+ 1024,
642
+ 768,
643
+ 512,
644
+ 256,
645
+ 128,
646
+ 64
647
+ ],
648
+ "matryoshka_weights": [
649
+ 1,
650
+ 1,
651
+ 1,
652
+ 1,
653
+ 1,
654
+ 1
655
+ ],
656
+ "n_dims_per_step": -1
657
+ }
658
+ ```
659
+
660
+ ### Training Hyperparameters
661
+ #### Non-Default Hyperparameters
662
+
663
+ - `eval_strategy`: epoch
664
+ - `per_device_train_batch_size`: 16
665
+ - `per_device_eval_batch_size`: 16
666
+ - `gradient_accumulation_steps`: 16
667
+ - `learning_rate`: 2e-05
668
+ - `num_train_epochs`: 5
669
+ - `lr_scheduler_type`: cosine
670
+ - `warmup_ratio`: 0.2
671
+ - `bf16`: True
672
+ - `tf32`: True
673
+ - `load_best_model_at_end`: True
674
+ - `optim`: adamw_torch_fused
675
+ - `batch_sampler`: no_duplicates
676
+
677
+ #### All Hyperparameters
678
+ <details><summary>Click to expand</summary>
679
+
680
+ - `overwrite_output_dir`: False
681
+ - `do_predict`: False
682
+ - `eval_strategy`: epoch
683
+ - `prediction_loss_only`: True
684
+ - `per_device_train_batch_size`: 16
685
+ - `per_device_eval_batch_size`: 16
686
+ - `per_gpu_train_batch_size`: None
687
+ - `per_gpu_eval_batch_size`: None
688
+ - `gradient_accumulation_steps`: 16
689
+ - `eval_accumulation_steps`: None
690
+ - `torch_empty_cache_steps`: None
691
+ - `learning_rate`: 2e-05
692
+ - `weight_decay`: 0.0
693
+ - `adam_beta1`: 0.9
694
+ - `adam_beta2`: 0.999
695
+ - `adam_epsilon`: 1e-08
696
+ - `max_grad_norm`: 1.0
697
+ - `num_train_epochs`: 5
698
+ - `max_steps`: -1
699
+ - `lr_scheduler_type`: cosine
700
+ - `lr_scheduler_kwargs`: {}
701
+ - `warmup_ratio`: 0.2
702
+ - `warmup_steps`: 0
703
+ - `log_level`: passive
704
+ - `log_level_replica`: warning
705
+ - `log_on_each_node`: True
706
+ - `logging_nan_inf_filter`: True
707
+ - `save_safetensors`: True
708
+ - `save_on_each_node`: False
709
+ - `save_only_model`: False
710
+ - `restore_callback_states_from_checkpoint`: False
711
+ - `no_cuda`: False
712
+ - `use_cpu`: False
713
+ - `use_mps_device`: False
714
+ - `seed`: 42
715
+ - `data_seed`: None
716
+ - `jit_mode_eval`: False
717
+ - `use_ipex`: False
718
+ - `bf16`: True
719
+ - `fp16`: False
720
+ - `fp16_opt_level`: O1
721
+ - `half_precision_backend`: auto
722
+ - `bf16_full_eval`: False
723
+ - `fp16_full_eval`: False
724
+ - `tf32`: True
725
+ - `local_rank`: 0
726
+ - `ddp_backend`: None
727
+ - `tpu_num_cores`: None
728
+ - `tpu_metrics_debug`: False
729
+ - `debug`: []
730
+ - `dataloader_drop_last`: False
731
+ - `dataloader_num_workers`: 0
732
+ - `dataloader_prefetch_factor`: None
733
+ - `past_index`: -1
734
+ - `disable_tqdm`: False
735
+ - `remove_unused_columns`: True
736
+ - `label_names`: None
737
+ - `load_best_model_at_end`: True
738
+ - `ignore_data_skip`: False
739
+ - `fsdp`: []
740
+ - `fsdp_min_num_params`: 0
741
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
742
+ - `fsdp_transformer_layer_cls_to_wrap`: None
743
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
744
+ - `deepspeed`: None
745
+ - `label_smoothing_factor`: 0.0
746
+ - `optim`: adamw_torch_fused
747
+ - `optim_args`: None
748
+ - `adafactor`: False
749
+ - `group_by_length`: False
750
+ - `length_column_name`: length
751
+ - `ddp_find_unused_parameters`: None
752
+ - `ddp_bucket_cap_mb`: None
753
+ - `ddp_broadcast_buffers`: False
754
+ - `dataloader_pin_memory`: True
755
+ - `dataloader_persistent_workers`: False
756
+ - `skip_memory_metrics`: True
757
+ - `use_legacy_prediction_loop`: False
758
+ - `push_to_hub`: False
759
+ - `resume_from_checkpoint`: None
760
+ - `hub_model_id`: None
761
+ - `hub_strategy`: every_save
762
+ - `hub_private_repo`: False
763
+ - `hub_always_push`: False
764
+ - `gradient_checkpointing`: False
765
+ - `gradient_checkpointing_kwargs`: None
766
+ - `include_inputs_for_metrics`: False
767
+ - `eval_do_concat_batches`: True
768
+ - `fp16_backend`: auto
769
+ - `push_to_hub_model_id`: None
770
+ - `push_to_hub_organization`: None
771
+ - `mp_parameters`:
772
+ - `auto_find_batch_size`: False
773
+ - `full_determinism`: False
774
+ - `torchdynamo`: None
775
+ - `ray_scope`: last
776
+ - `ddp_timeout`: 1800
777
+ - `torch_compile`: False
778
+ - `torch_compile_backend`: None
779
+ - `torch_compile_mode`: None
780
+ - `dispatch_batches`: None
781
+ - `split_batches`: None
782
+ - `include_tokens_per_second`: False
783
+ - `include_num_input_tokens_seen`: False
784
+ - `neftune_noise_alpha`: None
785
+ - `optim_target_modules`: None
786
+ - `batch_eval_metrics`: False
787
+ - `eval_on_start`: False
788
+ - `eval_use_gather_object`: False
789
+ - `batch_sampler`: no_duplicates
790
+ - `multi_dataset_batch_sampler`: proportional
791
+
792
+ </details>
793
+
794
+ ### Training Logs
795
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
796
+ |:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
797
+ | 0.4638 | 10 | 4.122 | - | - | - | - | - | - |
798
+ | 0.9275 | 20 | 2.7131 | - | - | - | - | - | - |
799
+ | 0.9739 | 21 | - | 0.2085 | 0.1973 | 0.1884 | 0.2087 | 0.1886 | 0.2177 |
800
+ | 1.3913 | 30 | 1.6964 | - | - | - | - | - | - |
801
+ | 1.8551 | 40 | 1.2311 | - | - | - | - | - | - |
802
+ | 1.9942 | 43 | - | 0.2148 | 0.2135 | 0.2170 | 0.2351 | 0.2091 | 0.2386 |
803
+ | 2.3188 | 50 | 0.9216 | - | - | - | - | - | - |
804
+ | 2.7826 | 60 | 0.737 | - | - | - | - | - | - |
805
+ | 2.9681 | 64 | - | 0.2145 | 0.2058 | 0.2072 | 0.2277 | 0.2127 | 0.2085 |
806
+ | 3.2464 | 70 | 0.6678 | - | - | - | - | - | - |
807
+ | 3.7101 | 80 | 0.555 | - | - | - | - | - | - |
808
+ | 3.9884 | 86 | - | 0.2028 | 0.2154 | 0.2117 | 0.2331 | 0.2113 | 0.2028 |
809
+ | 4.1739 | 90 | 0.5542 | - | - | - | - | - | - |
810
+ | 4.6377 | 100 | 0.5058 | - | - | - | - | - | - |
811
+ | **4.8696** | **105** | **-** | **0.2142** | **0.2158** | **0.2126** | **0.2225** | **0.2206** | **0.2117** |
812
+
813
+ * The bold row denotes the saved checkpoint.
814
+
815
+ ### Framework Versions
816
+ - Python: 3.10.12
817
+ - Sentence Transformers: 3.1.1
818
+ - Transformers: 4.44.2
819
+ - PyTorch: 2.4.1+cu121
820
+ - Accelerate: 0.35.0.dev0
821
+ - Datasets: 3.0.1
822
+ - Tokenizers: 0.19.1
823
+
824
+ ## Citation
825
+
826
+ ### BibTeX
827
+
828
+ #### Sentence Transformers
829
+ ```bibtex
830
+ @inproceedings{reimers-2019-sentence-bert,
831
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
832
+ author = "Reimers, Nils and Gurevych, Iryna",
833
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
834
+ month = "11",
835
+ year = "2019",
836
+ publisher = "Association for Computational Linguistics",
837
+ url = "https://arxiv.org/abs/1908.10084",
838
+ }
839
+ ```
840
+
841
+ #### MatryoshkaLoss
842
+ ```bibtex
843
+ @misc{kusupati2024matryoshka,
844
+ title={Matryoshka Representation Learning},
845
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
846
+ year={2024},
847
+ eprint={2205.13147},
848
+ archivePrefix={arXiv},
849
+ primaryClass={cs.LG}
850
+ }
851
+ ```
852
+
853
+ #### MultipleNegativesRankingLoss
854
+ ```bibtex
855
+ @misc{henderson2017efficient,
856
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
857
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
858
+ year={2017},
859
+ eprint={1705.00652},
860
+ archivePrefix={arXiv},
861
+ primaryClass={cs.CL}
862
+ }
863
+ ```
864
+
865
+ <!--
866
+ ## Glossary
867
+
868
+ *Clearly define terms in order to be accessible across audiences.*
869
+ -->
870
+
871
+ <!--
872
+ ## Model Card Authors
873
+
874
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
875
+ -->
876
+
877
+ <!--
878
+ ## Model Card Contact
879
+
880
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
881
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd45cede55fabb7b12268bbed41345a1302730e472f2cf1929de11e98f9d6631
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }