adriansanz commited on
Commit
72de3c7
·
verified ·
1 Parent(s): 2e706a9

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,892 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:9717
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: Per accedir a un habitatge amb protecció oficial al municipi de
31
+ Sitges s'ha d'estar inscrit en el Registre municipal de sol·licitants.
32
+ sentences:
33
+ - Quin és el motiu perquè la renovació de la inscripció en el Registre municipal
34
+ de sol·licitants d'habitatge amb protecció oficial de Sitges és necessària?
35
+ - Quin és el sector que es veu afectat per la disminució d'ingressos?
36
+ - Quin és el propòsit de la descripció de l'activitat?
37
+ - source_sentence: Aquest tràmit permet presentar ofertes i/o pressupostos sol·licitats
38
+ per l'Ajuntament de Sitges en procediments de contractes menors.
39
+ sentences:
40
+ - Quin és el requisit per a sol·licitar l'ajut econòmic a l'Ajuntament de Sitges?
41
+ - Què passa amb la llicència de gual quan es vol reduir les característiques físiques?
42
+ - Quin és el propòsit del tràmit de presentació d'ofertes?
43
+ - source_sentence: Estudis universitaris fins al grau de llicenciatura
44
+ sentences:
45
+ - Quin és el propòsit de la subvenció per a les persones autònomes?
46
+ - Quin és el requisit per als establiments oberts al públic destinats a espectacles
47
+ públics i activitats recreatives musicals?
48
+ - Quins estudis universitaris es poden fer amb aquesta ajuda?
49
+ - source_sentence: Les entitats especialitzades i acreditades com a proveïdores de
50
+ la Xarxa de Serveis Socials d'Atenció Pública interesades en la la gestió delegada
51
+ dels serveis públics de l'Ajuntament de Sitges així determinats, poden presentar-se
52
+ a les respectives convocatòries per a l'adjudicació.
53
+ sentences:
54
+ - On comencen i acaben les activitats de l'Estiu Jove?
55
+ - Quin és el benefici per a l'Ajuntament de Sitges de la gestió delegada?
56
+ - Quin és el paper de l’organització en la valoració d'una proposta?
57
+ - source_sentence: Publicada la llista d'infants admesos i exclosos a les estades
58
+ esportives, s'obre un termini perquè les persones admeses puguin demanar qualsevol
59
+ canvi a la sol·licitud inicial.
60
+ sentences:
61
+ - Quin és el contingut del volant històric de convivència?
62
+ - Quin és el període en què es pot demanar un canvi a la sol·licitud inicial?
63
+ - Quin és el paper de les escoles de Sitges en les activitats de foment de l'esport
64
+ escolar
65
+ model-index:
66
+ - name: SentenceTransformer based on BAAI/bge-m3
67
+ results:
68
+ - task:
69
+ type: information-retrieval
70
+ name: Information Retrieval
71
+ dataset:
72
+ name: dim 1024
73
+ type: dim_1024
74
+ metrics:
75
+ - type: cosine_accuracy@1
76
+ value: 0.10126582278481013
77
+ name: Cosine Accuracy@1
78
+ - type: cosine_accuracy@3
79
+ value: 0.18565400843881857
80
+ name: Cosine Accuracy@3
81
+ - type: cosine_accuracy@5
82
+ value: 0.24472573839662448
83
+ name: Cosine Accuracy@5
84
+ - type: cosine_accuracy@10
85
+ value: 0.34177215189873417
86
+ name: Cosine Accuracy@10
87
+ - type: cosine_precision@1
88
+ value: 0.10126582278481013
89
+ name: Cosine Precision@1
90
+ - type: cosine_precision@3
91
+ value: 0.061884669479606184
92
+ name: Cosine Precision@3
93
+ - type: cosine_precision@5
94
+ value: 0.0489451476793249
95
+ name: Cosine Precision@5
96
+ - type: cosine_precision@10
97
+ value: 0.03417721518987342
98
+ name: Cosine Precision@10
99
+ - type: cosine_recall@1
100
+ value: 0.10126582278481013
101
+ name: Cosine Recall@1
102
+ - type: cosine_recall@3
103
+ value: 0.18565400843881857
104
+ name: Cosine Recall@3
105
+ - type: cosine_recall@5
106
+ value: 0.24472573839662448
107
+ name: Cosine Recall@5
108
+ - type: cosine_recall@10
109
+ value: 0.34177215189873417
110
+ name: Cosine Recall@10
111
+ - type: cosine_ndcg@10
112
+ value: 0.20497940546236365
113
+ name: Cosine Ndcg@10
114
+ - type: cosine_mrr@10
115
+ value: 0.1631588641082312
116
+ name: Cosine Mrr@10
117
+ - type: cosine_map@100
118
+ value: 0.18190274772574827
119
+ name: Cosine Map@100
120
+ - task:
121
+ type: information-retrieval
122
+ name: Information Retrieval
123
+ dataset:
124
+ name: dim 768
125
+ type: dim_768
126
+ metrics:
127
+ - type: cosine_accuracy@1
128
+ value: 0.0970464135021097
129
+ name: Cosine Accuracy@1
130
+ - type: cosine_accuracy@3
131
+ value: 0.18143459915611815
132
+ name: Cosine Accuracy@3
133
+ - type: cosine_accuracy@5
134
+ value: 0.2616033755274262
135
+ name: Cosine Accuracy@5
136
+ - type: cosine_accuracy@10
137
+ value: 0.34177215189873417
138
+ name: Cosine Accuracy@10
139
+ - type: cosine_precision@1
140
+ value: 0.0970464135021097
141
+ name: Cosine Precision@1
142
+ - type: cosine_precision@3
143
+ value: 0.06047819971870604
144
+ name: Cosine Precision@3
145
+ - type: cosine_precision@5
146
+ value: 0.052320675105485236
147
+ name: Cosine Precision@5
148
+ - type: cosine_precision@10
149
+ value: 0.034177215189873406
150
+ name: Cosine Precision@10
151
+ - type: cosine_recall@1
152
+ value: 0.0970464135021097
153
+ name: Cosine Recall@1
154
+ - type: cosine_recall@3
155
+ value: 0.18143459915611815
156
+ name: Cosine Recall@3
157
+ - type: cosine_recall@5
158
+ value: 0.2616033755274262
159
+ name: Cosine Recall@5
160
+ - type: cosine_recall@10
161
+ value: 0.34177215189873417
162
+ name: Cosine Recall@10
163
+ - type: cosine_ndcg@10
164
+ value: 0.20447797235629017
165
+ name: Cosine Ndcg@10
166
+ - type: cosine_mrr@10
167
+ value: 0.16207219878105952
168
+ name: Cosine Mrr@10
169
+ - type: cosine_map@100
170
+ value: 0.18114215201809386
171
+ name: Cosine Map@100
172
+ - task:
173
+ type: information-retrieval
174
+ name: Information Retrieval
175
+ dataset:
176
+ name: dim 512
177
+ type: dim_512
178
+ metrics:
179
+ - type: cosine_accuracy@1
180
+ value: 0.08438818565400844
181
+ name: Cosine Accuracy@1
182
+ - type: cosine_accuracy@3
183
+ value: 0.17721518987341772
184
+ name: Cosine Accuracy@3
185
+ - type: cosine_accuracy@5
186
+ value: 0.23628691983122363
187
+ name: Cosine Accuracy@5
188
+ - type: cosine_accuracy@10
189
+ value: 0.34177215189873417
190
+ name: Cosine Accuracy@10
191
+ - type: cosine_precision@1
192
+ value: 0.08438818565400844
193
+ name: Cosine Precision@1
194
+ - type: cosine_precision@3
195
+ value: 0.05907172995780591
196
+ name: Cosine Precision@3
197
+ - type: cosine_precision@5
198
+ value: 0.04725738396624472
199
+ name: Cosine Precision@5
200
+ - type: cosine_precision@10
201
+ value: 0.03417721518987342
202
+ name: Cosine Precision@10
203
+ - type: cosine_recall@1
204
+ value: 0.08438818565400844
205
+ name: Cosine Recall@1
206
+ - type: cosine_recall@3
207
+ value: 0.17721518987341772
208
+ name: Cosine Recall@3
209
+ - type: cosine_recall@5
210
+ value: 0.23628691983122363
211
+ name: Cosine Recall@5
212
+ - type: cosine_recall@10
213
+ value: 0.34177215189873417
214
+ name: Cosine Recall@10
215
+ - type: cosine_ndcg@10
216
+ value: 0.19477348596574798
217
+ name: Cosine Ndcg@10
218
+ - type: cosine_mrr@10
219
+ value: 0.15014232134485297
220
+ name: Cosine Mrr@10
221
+ - type: cosine_map@100
222
+ value: 0.16826302734813764
223
+ name: Cosine Map@100
224
+ - task:
225
+ type: information-retrieval
226
+ name: Information Retrieval
227
+ dataset:
228
+ name: dim 256
229
+ type: dim_256
230
+ metrics:
231
+ - type: cosine_accuracy@1
232
+ value: 0.0759493670886076
233
+ name: Cosine Accuracy@1
234
+ - type: cosine_accuracy@3
235
+ value: 0.16877637130801687
236
+ name: Cosine Accuracy@3
237
+ - type: cosine_accuracy@5
238
+ value: 0.23628691983122363
239
+ name: Cosine Accuracy@5
240
+ - type: cosine_accuracy@10
241
+ value: 0.34177215189873417
242
+ name: Cosine Accuracy@10
243
+ - type: cosine_precision@1
244
+ value: 0.0759493670886076
245
+ name: Cosine Precision@1
246
+ - type: cosine_precision@3
247
+ value: 0.05625879043600562
248
+ name: Cosine Precision@3
249
+ - type: cosine_precision@5
250
+ value: 0.04725738396624473
251
+ name: Cosine Precision@5
252
+ - type: cosine_precision@10
253
+ value: 0.034177215189873406
254
+ name: Cosine Precision@10
255
+ - type: cosine_recall@1
256
+ value: 0.0759493670886076
257
+ name: Cosine Recall@1
258
+ - type: cosine_recall@3
259
+ value: 0.16877637130801687
260
+ name: Cosine Recall@3
261
+ - type: cosine_recall@5
262
+ value: 0.23628691983122363
263
+ name: Cosine Recall@5
264
+ - type: cosine_recall@10
265
+ value: 0.34177215189873417
266
+ name: Cosine Recall@10
267
+ - type: cosine_ndcg@10
268
+ value: 0.18887676996048183
269
+ name: Cosine Ndcg@10
270
+ - type: cosine_mrr@10
271
+ value: 0.14248208425423614
272
+ name: Cosine Mrr@10
273
+ - type: cosine_map@100
274
+ value: 0.15960797563687307
275
+ name: Cosine Map@100
276
+ - task:
277
+ type: information-retrieval
278
+ name: Information Retrieval
279
+ dataset:
280
+ name: dim 128
281
+ type: dim_128
282
+ metrics:
283
+ - type: cosine_accuracy@1
284
+ value: 0.08016877637130802
285
+ name: Cosine Accuracy@1
286
+ - type: cosine_accuracy@3
287
+ value: 0.16455696202531644
288
+ name: Cosine Accuracy@3
289
+ - type: cosine_accuracy@5
290
+ value: 0.2320675105485232
291
+ name: Cosine Accuracy@5
292
+ - type: cosine_accuracy@10
293
+ value: 0.32489451476793246
294
+ name: Cosine Accuracy@10
295
+ - type: cosine_precision@1
296
+ value: 0.08016877637130802
297
+ name: Cosine Precision@1
298
+ - type: cosine_precision@3
299
+ value: 0.05485232067510549
300
+ name: Cosine Precision@3
301
+ - type: cosine_precision@5
302
+ value: 0.046413502109704644
303
+ name: Cosine Precision@5
304
+ - type: cosine_precision@10
305
+ value: 0.032489451476793246
306
+ name: Cosine Precision@10
307
+ - type: cosine_recall@1
308
+ value: 0.08016877637130802
309
+ name: Cosine Recall@1
310
+ - type: cosine_recall@3
311
+ value: 0.16455696202531644
312
+ name: Cosine Recall@3
313
+ - type: cosine_recall@5
314
+ value: 0.2320675105485232
315
+ name: Cosine Recall@5
316
+ - type: cosine_recall@10
317
+ value: 0.32489451476793246
318
+ name: Cosine Recall@10
319
+ - type: cosine_ndcg@10
320
+ value: 0.18920967116655296
321
+ name: Cosine Ndcg@10
322
+ - type: cosine_mrr@10
323
+ value: 0.14736454356707523
324
+ name: Cosine Mrr@10
325
+ - type: cosine_map@100
326
+ value: 0.1622413863660417
327
+ name: Cosine Map@100
328
+ - task:
329
+ type: information-retrieval
330
+ name: Information Retrieval
331
+ dataset:
332
+ name: dim 64
333
+ type: dim_64
334
+ metrics:
335
+ - type: cosine_accuracy@1
336
+ value: 0.046413502109704644
337
+ name: Cosine Accuracy@1
338
+ - type: cosine_accuracy@3
339
+ value: 0.1518987341772152
340
+ name: Cosine Accuracy@3
341
+ - type: cosine_accuracy@5
342
+ value: 0.21940928270042195
343
+ name: Cosine Accuracy@5
344
+ - type: cosine_accuracy@10
345
+ value: 0.270042194092827
346
+ name: Cosine Accuracy@10
347
+ - type: cosine_precision@1
348
+ value: 0.046413502109704644
349
+ name: Cosine Precision@1
350
+ - type: cosine_precision@3
351
+ value: 0.050632911392405056
352
+ name: Cosine Precision@3
353
+ - type: cosine_precision@5
354
+ value: 0.04388185654008439
355
+ name: Cosine Precision@5
356
+ - type: cosine_precision@10
357
+ value: 0.0270042194092827
358
+ name: Cosine Precision@10
359
+ - type: cosine_recall@1
360
+ value: 0.046413502109704644
361
+ name: Cosine Recall@1
362
+ - type: cosine_recall@3
363
+ value: 0.1518987341772152
364
+ name: Cosine Recall@3
365
+ - type: cosine_recall@5
366
+ value: 0.21940928270042195
367
+ name: Cosine Recall@5
368
+ - type: cosine_recall@10
369
+ value: 0.270042194092827
370
+ name: Cosine Recall@10
371
+ - type: cosine_ndcg@10
372
+ value: 0.15109586098353134
373
+ name: Cosine Ndcg@10
374
+ - type: cosine_mrr@10
375
+ value: 0.11371308016877635
376
+ name: Cosine Mrr@10
377
+ - type: cosine_map@100
378
+ value: 0.12600329900444687
379
+ name: Cosine Map@100
380
+ ---
381
+
382
+ # SentenceTransformer based on BAAI/bge-m3
383
+
384
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
385
+
386
+ ## Model Details
387
+
388
+ ### Model Description
389
+ - **Model Type:** Sentence Transformer
390
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
391
+ - **Maximum Sequence Length:** 8192 tokens
392
+ - **Output Dimensionality:** 1024 tokens
393
+ - **Similarity Function:** Cosine Similarity
394
+ - **Training Dataset:**
395
+ - json
396
+ <!-- - **Language:** Unknown -->
397
+ <!-- - **License:** Unknown -->
398
+
399
+ ### Model Sources
400
+
401
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
402
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
403
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
404
+
405
+ ### Full Model Architecture
406
+
407
+ ```
408
+ SentenceTransformer(
409
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
410
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
411
+ (2): Normalize()
412
+ )
413
+ ```
414
+
415
+ ## Usage
416
+
417
+ ### Direct Usage (Sentence Transformers)
418
+
419
+ First install the Sentence Transformers library:
420
+
421
+ ```bash
422
+ pip install -U sentence-transformers
423
+ ```
424
+
425
+ Then you can load this model and run inference.
426
+ ```python
427
+ from sentence_transformers import SentenceTransformer
428
+
429
+ # Download from the 🤗 Hub
430
+ model = SentenceTransformer("adriansanz/sitges-v2-5ep")
431
+ # Run inference
432
+ sentences = [
433
+ "Publicada la llista d'infants admesos i exclosos a les estades esportives, s'obre un termini perquè les persones admeses puguin demanar qualsevol canvi a la sol·licitud inicial.",
434
+ 'Quin és el període en què es pot demanar un canvi a la sol·licitud inicial?',
435
+ 'Quin és el contingut del volant històric de convivència?',
436
+ ]
437
+ embeddings = model.encode(sentences)
438
+ print(embeddings.shape)
439
+ # [3, 1024]
440
+
441
+ # Get the similarity scores for the embeddings
442
+ similarities = model.similarity(embeddings, embeddings)
443
+ print(similarities.shape)
444
+ # [3, 3]
445
+ ```
446
+
447
+ <!--
448
+ ### Direct Usage (Transformers)
449
+
450
+ <details><summary>Click to see the direct usage in Transformers</summary>
451
+
452
+ </details>
453
+ -->
454
+
455
+ <!--
456
+ ### Downstream Usage (Sentence Transformers)
457
+
458
+ You can finetune this model on your own dataset.
459
+
460
+ <details><summary>Click to expand</summary>
461
+
462
+ </details>
463
+ -->
464
+
465
+ <!--
466
+ ### Out-of-Scope Use
467
+
468
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
469
+ -->
470
+
471
+ ## Evaluation
472
+
473
+ ### Metrics
474
+
475
+ #### Information Retrieval
476
+ * Dataset: `dim_1024`
477
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
478
+
479
+ | Metric | Value |
480
+ |:--------------------|:-----------|
481
+ | cosine_accuracy@1 | 0.1013 |
482
+ | cosine_accuracy@3 | 0.1857 |
483
+ | cosine_accuracy@5 | 0.2447 |
484
+ | cosine_accuracy@10 | 0.3418 |
485
+ | cosine_precision@1 | 0.1013 |
486
+ | cosine_precision@3 | 0.0619 |
487
+ | cosine_precision@5 | 0.0489 |
488
+ | cosine_precision@10 | 0.0342 |
489
+ | cosine_recall@1 | 0.1013 |
490
+ | cosine_recall@3 | 0.1857 |
491
+ | cosine_recall@5 | 0.2447 |
492
+ | cosine_recall@10 | 0.3418 |
493
+ | cosine_ndcg@10 | 0.205 |
494
+ | cosine_mrr@10 | 0.1632 |
495
+ | **cosine_map@100** | **0.1819** |
496
+
497
+ #### Information Retrieval
498
+ * Dataset: `dim_768`
499
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
500
+
501
+ | Metric | Value |
502
+ |:--------------------|:-----------|
503
+ | cosine_accuracy@1 | 0.097 |
504
+ | cosine_accuracy@3 | 0.1814 |
505
+ | cosine_accuracy@5 | 0.2616 |
506
+ | cosine_accuracy@10 | 0.3418 |
507
+ | cosine_precision@1 | 0.097 |
508
+ | cosine_precision@3 | 0.0605 |
509
+ | cosine_precision@5 | 0.0523 |
510
+ | cosine_precision@10 | 0.0342 |
511
+ | cosine_recall@1 | 0.097 |
512
+ | cosine_recall@3 | 0.1814 |
513
+ | cosine_recall@5 | 0.2616 |
514
+ | cosine_recall@10 | 0.3418 |
515
+ | cosine_ndcg@10 | 0.2045 |
516
+ | cosine_mrr@10 | 0.1621 |
517
+ | **cosine_map@100** | **0.1811** |
518
+
519
+ #### Information Retrieval
520
+ * Dataset: `dim_512`
521
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
522
+
523
+ | Metric | Value |
524
+ |:--------------------|:-----------|
525
+ | cosine_accuracy@1 | 0.0844 |
526
+ | cosine_accuracy@3 | 0.1772 |
527
+ | cosine_accuracy@5 | 0.2363 |
528
+ | cosine_accuracy@10 | 0.3418 |
529
+ | cosine_precision@1 | 0.0844 |
530
+ | cosine_precision@3 | 0.0591 |
531
+ | cosine_precision@5 | 0.0473 |
532
+ | cosine_precision@10 | 0.0342 |
533
+ | cosine_recall@1 | 0.0844 |
534
+ | cosine_recall@3 | 0.1772 |
535
+ | cosine_recall@5 | 0.2363 |
536
+ | cosine_recall@10 | 0.3418 |
537
+ | cosine_ndcg@10 | 0.1948 |
538
+ | cosine_mrr@10 | 0.1501 |
539
+ | **cosine_map@100** | **0.1683** |
540
+
541
+ #### Information Retrieval
542
+ * Dataset: `dim_256`
543
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
544
+
545
+ | Metric | Value |
546
+ |:--------------------|:-----------|
547
+ | cosine_accuracy@1 | 0.0759 |
548
+ | cosine_accuracy@3 | 0.1688 |
549
+ | cosine_accuracy@5 | 0.2363 |
550
+ | cosine_accuracy@10 | 0.3418 |
551
+ | cosine_precision@1 | 0.0759 |
552
+ | cosine_precision@3 | 0.0563 |
553
+ | cosine_precision@5 | 0.0473 |
554
+ | cosine_precision@10 | 0.0342 |
555
+ | cosine_recall@1 | 0.0759 |
556
+ | cosine_recall@3 | 0.1688 |
557
+ | cosine_recall@5 | 0.2363 |
558
+ | cosine_recall@10 | 0.3418 |
559
+ | cosine_ndcg@10 | 0.1889 |
560
+ | cosine_mrr@10 | 0.1425 |
561
+ | **cosine_map@100** | **0.1596** |
562
+
563
+ #### Information Retrieval
564
+ * Dataset: `dim_128`
565
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
566
+
567
+ | Metric | Value |
568
+ |:--------------------|:-----------|
569
+ | cosine_accuracy@1 | 0.0802 |
570
+ | cosine_accuracy@3 | 0.1646 |
571
+ | cosine_accuracy@5 | 0.2321 |
572
+ | cosine_accuracy@10 | 0.3249 |
573
+ | cosine_precision@1 | 0.0802 |
574
+ | cosine_precision@3 | 0.0549 |
575
+ | cosine_precision@5 | 0.0464 |
576
+ | cosine_precision@10 | 0.0325 |
577
+ | cosine_recall@1 | 0.0802 |
578
+ | cosine_recall@3 | 0.1646 |
579
+ | cosine_recall@5 | 0.2321 |
580
+ | cosine_recall@10 | 0.3249 |
581
+ | cosine_ndcg@10 | 0.1892 |
582
+ | cosine_mrr@10 | 0.1474 |
583
+ | **cosine_map@100** | **0.1622** |
584
+
585
+ #### Information Retrieval
586
+ * Dataset: `dim_64`
587
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
588
+
589
+ | Metric | Value |
590
+ |:--------------------|:----------|
591
+ | cosine_accuracy@1 | 0.0464 |
592
+ | cosine_accuracy@3 | 0.1519 |
593
+ | cosine_accuracy@5 | 0.2194 |
594
+ | cosine_accuracy@10 | 0.27 |
595
+ | cosine_precision@1 | 0.0464 |
596
+ | cosine_precision@3 | 0.0506 |
597
+ | cosine_precision@5 | 0.0439 |
598
+ | cosine_precision@10 | 0.027 |
599
+ | cosine_recall@1 | 0.0464 |
600
+ | cosine_recall@3 | 0.1519 |
601
+ | cosine_recall@5 | 0.2194 |
602
+ | cosine_recall@10 | 0.27 |
603
+ | cosine_ndcg@10 | 0.1511 |
604
+ | cosine_mrr@10 | 0.1137 |
605
+ | **cosine_map@100** | **0.126** |
606
+
607
+ <!--
608
+ ## Bias, Risks and Limitations
609
+
610
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
611
+ -->
612
+
613
+ <!--
614
+ ### Recommendations
615
+
616
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
617
+ -->
618
+
619
+ ## Training Details
620
+
621
+ ### Training Dataset
622
+
623
+ #### json
624
+
625
+ * Dataset: json
626
+ * Size: 9,717 training samples
627
+ * Columns: <code>positive</code> and <code>anchor</code>
628
+ * Approximate statistics based on the first 1000 samples:
629
+ | | positive | anchor |
630
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
631
+ | type | string | string |
632
+ | details | <ul><li>min: 8 tokens</li><li>mean: 49.79 tokens</li><li>max: 190 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.83 tokens</li><li>max: 43 tokens</li></ul> |
633
+ * Samples:
634
+ | positive | anchor |
635
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
636
+ | <code>L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges al llarg de l'exercici per la qual es sol·licita la subvenció, i reuneixin les condicions assenyalades a les bases.</code> | <code>Quin és el requisit per a obtenir les subvencions per a projectes i activitats esportives?</code> |
637
+ | <code>L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges al llarg de l'exercici per la qual es sol·licita la subvenció, i reuneixin les condicions assenyalades a les bases.</code> | <code>Quin és el requisit per a obtenir les subvencions per a projectes i activitats esportives?</code> |
638
+ | <code>No es proporciona informació sobre el requisit principal per obtenir el certificat.</code> | <code>Quin és el requisit principal per obtenir el certificat?</code> |
639
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
640
+ ```json
641
+ {
642
+ "loss": "MultipleNegativesRankingLoss",
643
+ "matryoshka_dims": [
644
+ 1024,
645
+ 768,
646
+ 512,
647
+ 256,
648
+ 128,
649
+ 64
650
+ ],
651
+ "matryoshka_weights": [
652
+ 1,
653
+ 1,
654
+ 1,
655
+ 1,
656
+ 1,
657
+ 1
658
+ ],
659
+ "n_dims_per_step": -1
660
+ }
661
+ ```
662
+
663
+ ### Training Hyperparameters
664
+ #### Non-Default Hyperparameters
665
+
666
+ - `eval_strategy`: epoch
667
+ - `per_device_train_batch_size`: 16
668
+ - `per_device_eval_batch_size`: 16
669
+ - `gradient_accumulation_steps`: 16
670
+ - `learning_rate`: 2e-05
671
+ - `num_train_epochs`: 5
672
+ - `lr_scheduler_type`: cosine
673
+ - `warmup_ratio`: 0.2
674
+ - `bf16`: True
675
+ - `tf32`: True
676
+ - `load_best_model_at_end`: True
677
+ - `optim`: adamw_torch_fused
678
+ - `batch_sampler`: no_duplicates
679
+
680
+ #### All Hyperparameters
681
+ <details><summary>Click to expand</summary>
682
+
683
+ - `overwrite_output_dir`: False
684
+ - `do_predict`: False
685
+ - `eval_strategy`: epoch
686
+ - `prediction_loss_only`: True
687
+ - `per_device_train_batch_size`: 16
688
+ - `per_device_eval_batch_size`: 16
689
+ - `per_gpu_train_batch_size`: None
690
+ - `per_gpu_eval_batch_size`: None
691
+ - `gradient_accumulation_steps`: 16
692
+ - `eval_accumulation_steps`: None
693
+ - `torch_empty_cache_steps`: None
694
+ - `learning_rate`: 2e-05
695
+ - `weight_decay`: 0.0
696
+ - `adam_beta1`: 0.9
697
+ - `adam_beta2`: 0.999
698
+ - `adam_epsilon`: 1e-08
699
+ - `max_grad_norm`: 1.0
700
+ - `num_train_epochs`: 5
701
+ - `max_steps`: -1
702
+ - `lr_scheduler_type`: cosine
703
+ - `lr_scheduler_kwargs`: {}
704
+ - `warmup_ratio`: 0.2
705
+ - `warmup_steps`: 0
706
+ - `log_level`: passive
707
+ - `log_level_replica`: warning
708
+ - `log_on_each_node`: True
709
+ - `logging_nan_inf_filter`: True
710
+ - `save_safetensors`: True
711
+ - `save_on_each_node`: False
712
+ - `save_only_model`: False
713
+ - `restore_callback_states_from_checkpoint`: False
714
+ - `no_cuda`: False
715
+ - `use_cpu`: False
716
+ - `use_mps_device`: False
717
+ - `seed`: 42
718
+ - `data_seed`: None
719
+ - `jit_mode_eval`: False
720
+ - `use_ipex`: False
721
+ - `bf16`: True
722
+ - `fp16`: False
723
+ - `fp16_opt_level`: O1
724
+ - `half_precision_backend`: auto
725
+ - `bf16_full_eval`: False
726
+ - `fp16_full_eval`: False
727
+ - `tf32`: True
728
+ - `local_rank`: 0
729
+ - `ddp_backend`: None
730
+ - `tpu_num_cores`: None
731
+ - `tpu_metrics_debug`: False
732
+ - `debug`: []
733
+ - `dataloader_drop_last`: False
734
+ - `dataloader_num_workers`: 0
735
+ - `dataloader_prefetch_factor`: None
736
+ - `past_index`: -1
737
+ - `disable_tqdm`: False
738
+ - `remove_unused_columns`: True
739
+ - `label_names`: None
740
+ - `load_best_model_at_end`: True
741
+ - `ignore_data_skip`: False
742
+ - `fsdp`: []
743
+ - `fsdp_min_num_params`: 0
744
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
745
+ - `fsdp_transformer_layer_cls_to_wrap`: None
746
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
747
+ - `deepspeed`: None
748
+ - `label_smoothing_factor`: 0.0
749
+ - `optim`: adamw_torch_fused
750
+ - `optim_args`: None
751
+ - `adafactor`: False
752
+ - `group_by_length`: False
753
+ - `length_column_name`: length
754
+ - `ddp_find_unused_parameters`: None
755
+ - `ddp_bucket_cap_mb`: None
756
+ - `ddp_broadcast_buffers`: False
757
+ - `dataloader_pin_memory`: True
758
+ - `dataloader_persistent_workers`: False
759
+ - `skip_memory_metrics`: True
760
+ - `use_legacy_prediction_loop`: False
761
+ - `push_to_hub`: False
762
+ - `resume_from_checkpoint`: None
763
+ - `hub_model_id`: None
764
+ - `hub_strategy`: every_save
765
+ - `hub_private_repo`: False
766
+ - `hub_always_push`: False
767
+ - `gradient_checkpointing`: False
768
+ - `gradient_checkpointing_kwargs`: None
769
+ - `include_inputs_for_metrics`: False
770
+ - `eval_do_concat_batches`: True
771
+ - `fp16_backend`: auto
772
+ - `push_to_hub_model_id`: None
773
+ - `push_to_hub_organization`: None
774
+ - `mp_parameters`:
775
+ - `auto_find_batch_size`: False
776
+ - `full_determinism`: False
777
+ - `torchdynamo`: None
778
+ - `ray_scope`: last
779
+ - `ddp_timeout`: 1800
780
+ - `torch_compile`: False
781
+ - `torch_compile_backend`: None
782
+ - `torch_compile_mode`: None
783
+ - `dispatch_batches`: None
784
+ - `split_batches`: None
785
+ - `include_tokens_per_second`: False
786
+ - `include_num_input_tokens_seen`: False
787
+ - `neftune_noise_alpha`: None
788
+ - `optim_target_modules`: None
789
+ - `batch_eval_metrics`: False
790
+ - `eval_on_start`: False
791
+ - `eval_use_gather_object`: False
792
+ - `batch_sampler`: no_duplicates
793
+ - `multi_dataset_batch_sampler`: proportional
794
+
795
+ </details>
796
+
797
+ ### Training Logs
798
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
799
+ |:-------:|:------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
800
+ | 0.2632 | 10 | 3.2527 | - | - | - | - | - | - |
801
+ | 0.5263 | 20 | 1.9679 | - | - | - | - | - | - |
802
+ | 0.7895 | 30 | 1.8319 | - | - | - | - | - | - |
803
+ | **1.0** | **38** | **-** | **0.1819** | **0.1622** | **0.1596** | **0.1683** | **0.126** | **0.1811** |
804
+ | 1.0526 | 40 | 1.3358 | - | - | - | - | - | - |
805
+ | 1.3158 | 50 | 1.1166 | - | - | - | - | - | - |
806
+ | 1.5789 | 60 | 0.8715 | - | - | - | - | - | - |
807
+ | 1.8421 | 70 | 0.8801 | - | - | - | - | - | - |
808
+ | 2.0 | 76 | - | 0.1819 | 0.1622 | 0.1596 | 0.1683 | 0.1260 | 0.1811 |
809
+ | 2.1053 | 80 | 0.6515 | - | - | - | - | - | - |
810
+ | 2.3684 | 90 | 0.536 | - | - | - | - | - | - |
811
+ | 2.6316 | 100 | 0.4682 | - | - | - | - | - | - |
812
+ | 2.8947 | 110 | 0.4686 | - | - | - | - | - | - |
813
+ | 3.0 | 114 | - | 0.1819 | 0.1622 | 0.1596 | 0.1683 | 0.1260 | 0.1811 |
814
+ | 3.1579 | 120 | 0.3161 | - | - | - | - | - | - |
815
+ | 3.4211 | 130 | 0.3554 | - | - | - | - | - | - |
816
+ | 3.6842 | 140 | 0.2886 | - | - | - | - | - | - |
817
+ | 3.9474 | 150 | 0.2616 | - | - | - | - | - | - |
818
+ | 4.0 | 152 | - | 0.1819 | 0.1622 | 0.1596 | 0.1683 | 0.1260 | 0.1811 |
819
+ | 4.2105 | 160 | 0.1902 | - | - | - | - | - | - |
820
+ | 4.4737 | 170 | 0.1894 | - | - | - | - | - | - |
821
+ | 4.7368 | 180 | 0.1858 | - | - | - | - | - | - |
822
+ | 5.0 | 190 | 0.1939 | 0.1819 | 0.1622 | 0.1596 | 0.1683 | 0.1260 | 0.1811 |
823
+
824
+ * The bold row denotes the saved checkpoint.
825
+
826
+ ### Framework Versions
827
+ - Python: 3.10.12
828
+ - Sentence Transformers: 3.1.1
829
+ - Transformers: 4.44.2
830
+ - PyTorch: 2.4.1+cu121
831
+ - Accelerate: 0.35.0.dev0
832
+ - Datasets: 3.0.1
833
+ - Tokenizers: 0.19.1
834
+
835
+ ## Citation
836
+
837
+ ### BibTeX
838
+
839
+ #### Sentence Transformers
840
+ ```bibtex
841
+ @inproceedings{reimers-2019-sentence-bert,
842
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
843
+ author = "Reimers, Nils and Gurevych, Iryna",
844
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
845
+ month = "11",
846
+ year = "2019",
847
+ publisher = "Association for Computational Linguistics",
848
+ url = "https://arxiv.org/abs/1908.10084",
849
+ }
850
+ ```
851
+
852
+ #### MatryoshkaLoss
853
+ ```bibtex
854
+ @misc{kusupati2024matryoshka,
855
+ title={Matryoshka Representation Learning},
856
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
857
+ year={2024},
858
+ eprint={2205.13147},
859
+ archivePrefix={arXiv},
860
+ primaryClass={cs.LG}
861
+ }
862
+ ```
863
+
864
+ #### MultipleNegativesRankingLoss
865
+ ```bibtex
866
+ @misc{henderson2017efficient,
867
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
868
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
869
+ year={2017},
870
+ eprint={1705.00652},
871
+ archivePrefix={arXiv},
872
+ primaryClass={cs.CL}
873
+ }
874
+ ```
875
+
876
+ <!--
877
+ ## Glossary
878
+
879
+ *Clearly define terms in order to be accessible across audiences.*
880
+ -->
881
+
882
+ <!--
883
+ ## Model Card Authors
884
+
885
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
886
+ -->
887
+
888
+ <!--
889
+ ## Model Card Contact
890
+
891
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
892
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:993b2248881724788dcab8c644a91dfd63584b6e5604ff2037cb5541e1e38e7e
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }