adriansanz commited on
Commit
245c7af
·
verified ·
1 Parent(s): ff4757d

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,896 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ pipeline_tag: sentence-similarity
21
+ tags:
22
+ - sentence-transformers
23
+ - sentence-similarity
24
+ - feature-extraction
25
+ - generated_from_trainer
26
+ - dataset_size:8769
27
+ - loss:MatryoshkaLoss
28
+ - loss:MultipleNegativesRankingLoss
29
+ widget:
30
+ - source_sentence: Aquelles persones que fan un ús regular i continuat de la deixalleria
31
+ municipal poden gaudir d’una bonificació del 20% sobre la quota de les taxes per
32
+ recollida, tractament i eliminació d'escombraries i altres residus urbans domiciliaris.
33
+ sentences:
34
+ - Quin és el contingut dels documents dirigits a l'Ajuntament de Sitges?
35
+ - Quin és el benefici de la deixalleria municipal?
36
+ - Quin és el mètode de pagament dels ajuts atorgats en cas de normalitat?
37
+ - source_sentence: Les subvencions per al desenvolupament i/o consolidació de sectors
38
+ econòmics del municipi tenen com a objectiu generar un benefici ambiental per
39
+ al municipi, a través de la promoció de pràctiques sostenibles.
40
+ sentences:
41
+ - Quin és el requisit per a la llicència per a la modificació d'un règim de propietat
42
+ horitzontal?
43
+ - Quin és el benefici ambiental esperat de les subvencions per al desenvolupament
44
+ i/o consolidació de sectors econòmics del municipi?
45
+ - Quin és el propòsit de la liquidació de l'import corresponent a l'exercici?
46
+ - source_sentence: Aquelles persones que s'hagin inscrit a les estades esportives
47
+ organitzades per l'Ajuntament de Sitges i que formin part d'una unitat familiar
48
+ amb uns ingressos bruts mensuals, que una vegada dividits pel nombre de membres,
49
+ siguin inferiors entre una i dues terceres parts de l'IPREM, poden sol·licitar
50
+ una reducció de la quota d'aquestes activitats o l'aplicació de la corresponent
51
+ tarifa bonificada establerta en les ordenances dels preus públics.
52
+ sentences:
53
+ - Quin és el benefici de les subvencions per a les entitats culturals?
54
+ - Quin és el paper de l'IPREM en la sol·licitud de reducció de la quota d'una estada
55
+ esportiva?
56
+ - Quin és el paper de l'Ajuntament en la resolució d'una situació sanitària no adequada
57
+ en un domini particular?
58
+ - source_sentence: La inscripció al cens municipal facilita la recuperació d’aquests
59
+ animals en cas de pèrdua alhora que permet a l’Ajuntament disposar de les dades
60
+ necessàries en cas que s’hagin de realitzar campanyes sanitàries.
61
+ sentences:
62
+ - Quin és el tipus de serveis auxiliars que es consideren despeses elegibles?
63
+ - Quin és el benefici d'estacionar a les zones verdes per als residents?
64
+ - Quin és el motiu pel qual es crea el cens municipal d’animals de companyia?
65
+ - source_sentence: A la nostra vila hi ha veïns i veïnes que els agradaria tornar
66
+ a fer de pagès o provar-ho per primera vegada.
67
+ sentences:
68
+ - Quin és l'objectiu principal de l'activitat del Viver dels Avis de Sitges?
69
+ - Quin és el propòsit del carnet de conductor de taxi?
70
+ - Quin és el paper de les persones en relació amb les indemnitzacions?
71
+ model-index:
72
+ - name: SentenceTransformer based on BAAI/bge-m3
73
+ results:
74
+ - task:
75
+ type: information-retrieval
76
+ name: Information Retrieval
77
+ dataset:
78
+ name: dim 1024
79
+ type: dim_1024
80
+ metrics:
81
+ - type: cosine_accuracy@1
82
+ value: 0.11054852320675106
83
+ name: Cosine Accuracy@1
84
+ - type: cosine_accuracy@3
85
+ value: 0.2270042194092827
86
+ name: Cosine Accuracy@3
87
+ - type: cosine_accuracy@5
88
+ value: 0.30548523206751055
89
+ name: Cosine Accuracy@5
90
+ - type: cosine_accuracy@10
91
+ value: 0.4531645569620253
92
+ name: Cosine Accuracy@10
93
+ - type: cosine_precision@1
94
+ value: 0.11054852320675106
95
+ name: Cosine Precision@1
96
+ - type: cosine_precision@3
97
+ value: 0.07566807313642755
98
+ name: Cosine Precision@3
99
+ - type: cosine_precision@5
100
+ value: 0.06109704641350212
101
+ name: Cosine Precision@5
102
+ - type: cosine_precision@10
103
+ value: 0.04531645569620253
104
+ name: Cosine Precision@10
105
+ - type: cosine_recall@1
106
+ value: 0.11054852320675106
107
+ name: Cosine Recall@1
108
+ - type: cosine_recall@3
109
+ value: 0.2270042194092827
110
+ name: Cosine Recall@3
111
+ - type: cosine_recall@5
112
+ value: 0.30548523206751055
113
+ name: Cosine Recall@5
114
+ - type: cosine_recall@10
115
+ value: 0.4531645569620253
116
+ name: Cosine Recall@10
117
+ - type: cosine_ndcg@10
118
+ value: 0.25622764604771076
119
+ name: Cosine Ndcg@10
120
+ - type: cosine_mrr@10
121
+ value: 0.1965350612818966
122
+ name: Cosine Mrr@10
123
+ - type: cosine_map@100
124
+ value: 0.21859411055862238
125
+ name: Cosine Map@100
126
+ - task:
127
+ type: information-retrieval
128
+ name: Information Retrieval
129
+ dataset:
130
+ name: dim 768
131
+ type: dim_768
132
+ metrics:
133
+ - type: cosine_accuracy@1
134
+ value: 0.11561181434599156
135
+ name: Cosine Accuracy@1
136
+ - type: cosine_accuracy@3
137
+ value: 0.2320675105485232
138
+ name: Cosine Accuracy@3
139
+ - type: cosine_accuracy@5
140
+ value: 0.31139240506329113
141
+ name: Cosine Accuracy@5
142
+ - type: cosine_accuracy@10
143
+ value: 0.44556962025316454
144
+ name: Cosine Accuracy@10
145
+ - type: cosine_precision@1
146
+ value: 0.11561181434599156
147
+ name: Cosine Precision@1
148
+ - type: cosine_precision@3
149
+ value: 0.07735583684950773
150
+ name: Cosine Precision@3
151
+ - type: cosine_precision@5
152
+ value: 0.06227848101265824
153
+ name: Cosine Precision@5
154
+ - type: cosine_precision@10
155
+ value: 0.044556962025316456
156
+ name: Cosine Precision@10
157
+ - type: cosine_recall@1
158
+ value: 0.11561181434599156
159
+ name: Cosine Recall@1
160
+ - type: cosine_recall@3
161
+ value: 0.2320675105485232
162
+ name: Cosine Recall@3
163
+ - type: cosine_recall@5
164
+ value: 0.31139240506329113
165
+ name: Cosine Recall@5
166
+ - type: cosine_recall@10
167
+ value: 0.44556962025316454
168
+ name: Cosine Recall@10
169
+ - type: cosine_ndcg@10
170
+ value: 0.2579660315889156
171
+ name: Cosine Ndcg@10
172
+ - type: cosine_mrr@10
173
+ value: 0.20086732301922164
174
+ name: Cosine Mrr@10
175
+ - type: cosine_map@100
176
+ value: 0.22344331787470567
177
+ name: Cosine Map@100
178
+ - task:
179
+ type: information-retrieval
180
+ name: Information Retrieval
181
+ dataset:
182
+ name: dim 512
183
+ type: dim_512
184
+ metrics:
185
+ - type: cosine_accuracy@1
186
+ value: 0.10379746835443038
187
+ name: Cosine Accuracy@1
188
+ - type: cosine_accuracy@3
189
+ value: 0.2210970464135021
190
+ name: Cosine Accuracy@3
191
+ - type: cosine_accuracy@5
192
+ value: 0.2970464135021097
193
+ name: Cosine Accuracy@5
194
+ - type: cosine_accuracy@10
195
+ value: 0.43966244725738396
196
+ name: Cosine Accuracy@10
197
+ - type: cosine_precision@1
198
+ value: 0.10379746835443038
199
+ name: Cosine Precision@1
200
+ - type: cosine_precision@3
201
+ value: 0.07369901547116735
202
+ name: Cosine Precision@3
203
+ - type: cosine_precision@5
204
+ value: 0.05940928270042194
205
+ name: Cosine Precision@5
206
+ - type: cosine_precision@10
207
+ value: 0.043966244725738395
208
+ name: Cosine Precision@10
209
+ - type: cosine_recall@1
210
+ value: 0.10379746835443038
211
+ name: Cosine Recall@1
212
+ - type: cosine_recall@3
213
+ value: 0.2210970464135021
214
+ name: Cosine Recall@3
215
+ - type: cosine_recall@5
216
+ value: 0.2970464135021097
217
+ name: Cosine Recall@5
218
+ - type: cosine_recall@10
219
+ value: 0.43966244725738396
220
+ name: Cosine Recall@10
221
+ - type: cosine_ndcg@10
222
+ value: 0.2473619714740055
223
+ name: Cosine Ndcg@10
224
+ - type: cosine_mrr@10
225
+ value: 0.18892840399169497
226
+ name: Cosine Mrr@10
227
+ - type: cosine_map@100
228
+ value: 0.21182552044674802
229
+ name: Cosine Map@100
230
+ - task:
231
+ type: information-retrieval
232
+ name: Information Retrieval
233
+ dataset:
234
+ name: dim 256
235
+ type: dim_256
236
+ metrics:
237
+ - type: cosine_accuracy@1
238
+ value: 0.10042194092827005
239
+ name: Cosine Accuracy@1
240
+ - type: cosine_accuracy@3
241
+ value: 0.21518987341772153
242
+ name: Cosine Accuracy@3
243
+ - type: cosine_accuracy@5
244
+ value: 0.2978902953586498
245
+ name: Cosine Accuracy@5
246
+ - type: cosine_accuracy@10
247
+ value: 0.4438818565400844
248
+ name: Cosine Accuracy@10
249
+ - type: cosine_precision@1
250
+ value: 0.10042194092827005
251
+ name: Cosine Precision@1
252
+ - type: cosine_precision@3
253
+ value: 0.07172995780590716
254
+ name: Cosine Precision@3
255
+ - type: cosine_precision@5
256
+ value: 0.05957805907172995
257
+ name: Cosine Precision@5
258
+ - type: cosine_precision@10
259
+ value: 0.04438818565400844
260
+ name: Cosine Precision@10
261
+ - type: cosine_recall@1
262
+ value: 0.10042194092827005
263
+ name: Cosine Recall@1
264
+ - type: cosine_recall@3
265
+ value: 0.21518987341772153
266
+ name: Cosine Recall@3
267
+ - type: cosine_recall@5
268
+ value: 0.2978902953586498
269
+ name: Cosine Recall@5
270
+ - type: cosine_recall@10
271
+ value: 0.4438818565400844
272
+ name: Cosine Recall@10
273
+ - type: cosine_ndcg@10
274
+ value: 0.2479637375723138
275
+ name: Cosine Ndcg@10
276
+ - type: cosine_mrr@10
277
+ value: 0.18831156653941447
278
+ name: Cosine Mrr@10
279
+ - type: cosine_map@100
280
+ value: 0.21130848497160895
281
+ name: Cosine Map@100
282
+ - task:
283
+ type: information-retrieval
284
+ name: Information Retrieval
285
+ dataset:
286
+ name: dim 128
287
+ type: dim_128
288
+ metrics:
289
+ - type: cosine_accuracy@1
290
+ value: 0.10886075949367088
291
+ name: Cosine Accuracy@1
292
+ - type: cosine_accuracy@3
293
+ value: 0.22616033755274262
294
+ name: Cosine Accuracy@3
295
+ - type: cosine_accuracy@5
296
+ value: 0.3029535864978903
297
+ name: Cosine Accuracy@5
298
+ - type: cosine_accuracy@10
299
+ value: 0.4413502109704641
300
+ name: Cosine Accuracy@10
301
+ - type: cosine_precision@1
302
+ value: 0.10886075949367088
303
+ name: Cosine Precision@1
304
+ - type: cosine_precision@3
305
+ value: 0.07538677918424753
306
+ name: Cosine Precision@3
307
+ - type: cosine_precision@5
308
+ value: 0.060590717299578066
309
+ name: Cosine Precision@5
310
+ - type: cosine_precision@10
311
+ value: 0.04413502109704641
312
+ name: Cosine Precision@10
313
+ - type: cosine_recall@1
314
+ value: 0.10886075949367088
315
+ name: Cosine Recall@1
316
+ - type: cosine_recall@3
317
+ value: 0.22616033755274262
318
+ name: Cosine Recall@3
319
+ - type: cosine_recall@5
320
+ value: 0.3029535864978903
321
+ name: Cosine Recall@5
322
+ - type: cosine_recall@10
323
+ value: 0.4413502109704641
324
+ name: Cosine Recall@10
325
+ - type: cosine_ndcg@10
326
+ value: 0.25366131313332974
327
+ name: Cosine Ndcg@10
328
+ - type: cosine_mrr@10
329
+ value: 0.19639441430580665
330
+ name: Cosine Mrr@10
331
+ - type: cosine_map@100
332
+ value: 0.2187767008895725
333
+ name: Cosine Map@100
334
+ - task:
335
+ type: information-retrieval
336
+ name: Information Retrieval
337
+ dataset:
338
+ name: dim 64
339
+ type: dim_64
340
+ metrics:
341
+ - type: cosine_accuracy@1
342
+ value: 0.09367088607594937
343
+ name: Cosine Accuracy@1
344
+ - type: cosine_accuracy@3
345
+ value: 0.2
346
+ name: Cosine Accuracy@3
347
+ - type: cosine_accuracy@5
348
+ value: 0.2742616033755274
349
+ name: Cosine Accuracy@5
350
+ - type: cosine_accuracy@10
351
+ value: 0.4177215189873418
352
+ name: Cosine Accuracy@10
353
+ - type: cosine_precision@1
354
+ value: 0.09367088607594937
355
+ name: Cosine Precision@1
356
+ - type: cosine_precision@3
357
+ value: 0.06666666666666667
358
+ name: Cosine Precision@3
359
+ - type: cosine_precision@5
360
+ value: 0.05485232067510549
361
+ name: Cosine Precision@5
362
+ - type: cosine_precision@10
363
+ value: 0.04177215189873418
364
+ name: Cosine Precision@10
365
+ - type: cosine_recall@1
366
+ value: 0.09367088607594937
367
+ name: Cosine Recall@1
368
+ - type: cosine_recall@3
369
+ value: 0.2
370
+ name: Cosine Recall@3
371
+ - type: cosine_recall@5
372
+ value: 0.2742616033755274
373
+ name: Cosine Recall@5
374
+ - type: cosine_recall@10
375
+ value: 0.4177215189873418
376
+ name: Cosine Recall@10
377
+ - type: cosine_ndcg@10
378
+ value: 0.23046340016141767
379
+ name: Cosine Ndcg@10
380
+ - type: cosine_mrr@10
381
+ value: 0.1738279418659165
382
+ name: Cosine Mrr@10
383
+ - type: cosine_map@100
384
+ value: 0.19782551958501599
385
+ name: Cosine Map@100
386
+ ---
387
+
388
+ # SentenceTransformer based on BAAI/bge-m3
389
+
390
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
391
+
392
+ ## Model Details
393
+
394
+ ### Model Description
395
+ - **Model Type:** Sentence Transformer
396
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
397
+ - **Maximum Sequence Length:** 8192 tokens
398
+ - **Output Dimensionality:** 1024 tokens
399
+ - **Similarity Function:** Cosine Similarity
400
+ - **Training Dataset:**
401
+ - json
402
+ <!-- - **Language:** Unknown -->
403
+ <!-- - **License:** Unknown -->
404
+
405
+ ### Model Sources
406
+
407
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
408
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
409
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
410
+
411
+ ### Full Model Architecture
412
+
413
+ ```
414
+ SentenceTransformer(
415
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
416
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
417
+ (2): Normalize()
418
+ )
419
+ ```
420
+
421
+ ## Usage
422
+
423
+ ### Direct Usage (Sentence Transformers)
424
+
425
+ First install the Sentence Transformers library:
426
+
427
+ ```bash
428
+ pip install -U sentence-transformers
429
+ ```
430
+
431
+ Then you can load this model and run inference.
432
+ ```python
433
+ from sentence_transformers import SentenceTransformer
434
+
435
+ # Download from the 🤗 Hub
436
+ model = SentenceTransformer("adriansanz/ST-tramits-sitges-003-5ep")
437
+ # Run inference
438
+ sentences = [
439
+ 'A la nostra vila hi ha veïns i veïnes que els agradaria tornar a fer de pagès o provar-ho per primera vegada.',
440
+ "Quin és l'objectiu principal de l'activitat del Viver dels Avis de Sitges?",
441
+ 'Quin és el paper de les persones en relació amb les indemnitzacions?',
442
+ ]
443
+ embeddings = model.encode(sentences)
444
+ print(embeddings.shape)
445
+ # [3, 1024]
446
+
447
+ # Get the similarity scores for the embeddings
448
+ similarities = model.similarity(embeddings, embeddings)
449
+ print(similarities.shape)
450
+ # [3, 3]
451
+ ```
452
+
453
+ <!--
454
+ ### Direct Usage (Transformers)
455
+
456
+ <details><summary>Click to see the direct usage in Transformers</summary>
457
+
458
+ </details>
459
+ -->
460
+
461
+ <!--
462
+ ### Downstream Usage (Sentence Transformers)
463
+
464
+ You can finetune this model on your own dataset.
465
+
466
+ <details><summary>Click to expand</summary>
467
+
468
+ </details>
469
+ -->
470
+
471
+ <!--
472
+ ### Out-of-Scope Use
473
+
474
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
475
+ -->
476
+
477
+ ## Evaluation
478
+
479
+ ### Metrics
480
+
481
+ #### Information Retrieval
482
+ * Dataset: `dim_1024`
483
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
484
+
485
+ | Metric | Value |
486
+ |:--------------------|:-----------|
487
+ | cosine_accuracy@1 | 0.1105 |
488
+ | cosine_accuracy@3 | 0.227 |
489
+ | cosine_accuracy@5 | 0.3055 |
490
+ | cosine_accuracy@10 | 0.4532 |
491
+ | cosine_precision@1 | 0.1105 |
492
+ | cosine_precision@3 | 0.0757 |
493
+ | cosine_precision@5 | 0.0611 |
494
+ | cosine_precision@10 | 0.0453 |
495
+ | cosine_recall@1 | 0.1105 |
496
+ | cosine_recall@3 | 0.227 |
497
+ | cosine_recall@5 | 0.3055 |
498
+ | cosine_recall@10 | 0.4532 |
499
+ | cosine_ndcg@10 | 0.2562 |
500
+ | cosine_mrr@10 | 0.1965 |
501
+ | **cosine_map@100** | **0.2186** |
502
+
503
+ #### Information Retrieval
504
+ * Dataset: `dim_768`
505
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
506
+
507
+ | Metric | Value |
508
+ |:--------------------|:-----------|
509
+ | cosine_accuracy@1 | 0.1156 |
510
+ | cosine_accuracy@3 | 0.2321 |
511
+ | cosine_accuracy@5 | 0.3114 |
512
+ | cosine_accuracy@10 | 0.4456 |
513
+ | cosine_precision@1 | 0.1156 |
514
+ | cosine_precision@3 | 0.0774 |
515
+ | cosine_precision@5 | 0.0623 |
516
+ | cosine_precision@10 | 0.0446 |
517
+ | cosine_recall@1 | 0.1156 |
518
+ | cosine_recall@3 | 0.2321 |
519
+ | cosine_recall@5 | 0.3114 |
520
+ | cosine_recall@10 | 0.4456 |
521
+ | cosine_ndcg@10 | 0.258 |
522
+ | cosine_mrr@10 | 0.2009 |
523
+ | **cosine_map@100** | **0.2234** |
524
+
525
+ #### Information Retrieval
526
+ * Dataset: `dim_512`
527
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
528
+
529
+ | Metric | Value |
530
+ |:--------------------|:-----------|
531
+ | cosine_accuracy@1 | 0.1038 |
532
+ | cosine_accuracy@3 | 0.2211 |
533
+ | cosine_accuracy@5 | 0.297 |
534
+ | cosine_accuracy@10 | 0.4397 |
535
+ | cosine_precision@1 | 0.1038 |
536
+ | cosine_precision@3 | 0.0737 |
537
+ | cosine_precision@5 | 0.0594 |
538
+ | cosine_precision@10 | 0.044 |
539
+ | cosine_recall@1 | 0.1038 |
540
+ | cosine_recall@3 | 0.2211 |
541
+ | cosine_recall@5 | 0.297 |
542
+ | cosine_recall@10 | 0.4397 |
543
+ | cosine_ndcg@10 | 0.2474 |
544
+ | cosine_mrr@10 | 0.1889 |
545
+ | **cosine_map@100** | **0.2118** |
546
+
547
+ #### Information Retrieval
548
+ * Dataset: `dim_256`
549
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
550
+
551
+ | Metric | Value |
552
+ |:--------------------|:-----------|
553
+ | cosine_accuracy@1 | 0.1004 |
554
+ | cosine_accuracy@3 | 0.2152 |
555
+ | cosine_accuracy@5 | 0.2979 |
556
+ | cosine_accuracy@10 | 0.4439 |
557
+ | cosine_precision@1 | 0.1004 |
558
+ | cosine_precision@3 | 0.0717 |
559
+ | cosine_precision@5 | 0.0596 |
560
+ | cosine_precision@10 | 0.0444 |
561
+ | cosine_recall@1 | 0.1004 |
562
+ | cosine_recall@3 | 0.2152 |
563
+ | cosine_recall@5 | 0.2979 |
564
+ | cosine_recall@10 | 0.4439 |
565
+ | cosine_ndcg@10 | 0.248 |
566
+ | cosine_mrr@10 | 0.1883 |
567
+ | **cosine_map@100** | **0.2113** |
568
+
569
+ #### Information Retrieval
570
+ * Dataset: `dim_128`
571
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
572
+
573
+ | Metric | Value |
574
+ |:--------------------|:-----------|
575
+ | cosine_accuracy@1 | 0.1089 |
576
+ | cosine_accuracy@3 | 0.2262 |
577
+ | cosine_accuracy@5 | 0.303 |
578
+ | cosine_accuracy@10 | 0.4414 |
579
+ | cosine_precision@1 | 0.1089 |
580
+ | cosine_precision@3 | 0.0754 |
581
+ | cosine_precision@5 | 0.0606 |
582
+ | cosine_precision@10 | 0.0441 |
583
+ | cosine_recall@1 | 0.1089 |
584
+ | cosine_recall@3 | 0.2262 |
585
+ | cosine_recall@5 | 0.303 |
586
+ | cosine_recall@10 | 0.4414 |
587
+ | cosine_ndcg@10 | 0.2537 |
588
+ | cosine_mrr@10 | 0.1964 |
589
+ | **cosine_map@100** | **0.2188** |
590
+
591
+ #### Information Retrieval
592
+ * Dataset: `dim_64`
593
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
594
+
595
+ | Metric | Value |
596
+ |:--------------------|:-----------|
597
+ | cosine_accuracy@1 | 0.0937 |
598
+ | cosine_accuracy@3 | 0.2 |
599
+ | cosine_accuracy@5 | 0.2743 |
600
+ | cosine_accuracy@10 | 0.4177 |
601
+ | cosine_precision@1 | 0.0937 |
602
+ | cosine_precision@3 | 0.0667 |
603
+ | cosine_precision@5 | 0.0549 |
604
+ | cosine_precision@10 | 0.0418 |
605
+ | cosine_recall@1 | 0.0937 |
606
+ | cosine_recall@3 | 0.2 |
607
+ | cosine_recall@5 | 0.2743 |
608
+ | cosine_recall@10 | 0.4177 |
609
+ | cosine_ndcg@10 | 0.2305 |
610
+ | cosine_mrr@10 | 0.1738 |
611
+ | **cosine_map@100** | **0.1978** |
612
+
613
+ <!--
614
+ ## Bias, Risks and Limitations
615
+
616
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
617
+ -->
618
+
619
+ <!--
620
+ ### Recommendations
621
+
622
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
623
+ -->
624
+
625
+ ## Training Details
626
+
627
+ ### Training Dataset
628
+
629
+ #### json
630
+
631
+ * Dataset: json
632
+ * Size: 8,769 training samples
633
+ * Columns: <code>positive</code> and <code>anchor</code>
634
+ * Approximate statistics based on the first 1000 samples:
635
+ | | positive | anchor |
636
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
637
+ | type | string | string |
638
+ | details | <ul><li>min: 5 tokens</li><li>mean: 49.22 tokens</li><li>max: 178 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.94 tokens</li><li>max: 48 tokens</li></ul> |
639
+ * Samples:
640
+ | positive | anchor |
641
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
642
+ | <code>L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges.</code> | <code>Quin és el benefici de les subvencions per a les entitats esportives?</code> |
643
+ | <code>L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges al llarg de l'exercici per la qual es sol·licita la subvenció, i reuneixin les condicions assenyalades a les bases.</code> | <code>Quin és el període d'execució dels projectes i activitats esportives?</code> |
644
+ | <code>Certificat on s'indica el nombre d'habitatges que configuren el padró de l'Impost sobre Béns Immobles del municipi o bé d'una part d'aquest.</code> | <code>Quin és el contingut del certificat del nombre d'habitatges?</code> |
645
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
646
+ ```json
647
+ {
648
+ "loss": "MultipleNegativesRankingLoss",
649
+ "matryoshka_dims": [
650
+ 1024,
651
+ 768,
652
+ 512,
653
+ 256,
654
+ 128,
655
+ 64
656
+ ],
657
+ "matryoshka_weights": [
658
+ 1,
659
+ 1,
660
+ 1,
661
+ 1,
662
+ 1,
663
+ 1
664
+ ],
665
+ "n_dims_per_step": -1
666
+ }
667
+ ```
668
+
669
+ ### Training Hyperparameters
670
+ #### Non-Default Hyperparameters
671
+
672
+ - `eval_strategy`: epoch
673
+ - `per_device_train_batch_size`: 16
674
+ - `per_device_eval_batch_size`: 16
675
+ - `gradient_accumulation_steps`: 16
676
+ - `learning_rate`: 2e-05
677
+ - `num_train_epochs`: 5
678
+ - `lr_scheduler_type`: cosine
679
+ - `warmup_ratio`: 0.2
680
+ - `bf16`: True
681
+ - `tf32`: True
682
+ - `load_best_model_at_end`: True
683
+ - `optim`: adamw_torch_fused
684
+ - `batch_sampler`: no_duplicates
685
+
686
+ #### All Hyperparameters
687
+ <details><summary>Click to expand</summary>
688
+
689
+ - `overwrite_output_dir`: False
690
+ - `do_predict`: False
691
+ - `eval_strategy`: epoch
692
+ - `prediction_loss_only`: True
693
+ - `per_device_train_batch_size`: 16
694
+ - `per_device_eval_batch_size`: 16
695
+ - `per_gpu_train_batch_size`: None
696
+ - `per_gpu_eval_batch_size`: None
697
+ - `gradient_accumulation_steps`: 16
698
+ - `eval_accumulation_steps`: None
699
+ - `torch_empty_cache_steps`: None
700
+ - `learning_rate`: 2e-05
701
+ - `weight_decay`: 0.0
702
+ - `adam_beta1`: 0.9
703
+ - `adam_beta2`: 0.999
704
+ - `adam_epsilon`: 1e-08
705
+ - `max_grad_norm`: 1.0
706
+ - `num_train_epochs`: 5
707
+ - `max_steps`: -1
708
+ - `lr_scheduler_type`: cosine
709
+ - `lr_scheduler_kwargs`: {}
710
+ - `warmup_ratio`: 0.2
711
+ - `warmup_steps`: 0
712
+ - `log_level`: passive
713
+ - `log_level_replica`: warning
714
+ - `log_on_each_node`: True
715
+ - `logging_nan_inf_filter`: True
716
+ - `save_safetensors`: True
717
+ - `save_on_each_node`: False
718
+ - `save_only_model`: False
719
+ - `restore_callback_states_from_checkpoint`: False
720
+ - `no_cuda`: False
721
+ - `use_cpu`: False
722
+ - `use_mps_device`: False
723
+ - `seed`: 42
724
+ - `data_seed`: None
725
+ - `jit_mode_eval`: False
726
+ - `use_ipex`: False
727
+ - `bf16`: True
728
+ - `fp16`: False
729
+ - `fp16_opt_level`: O1
730
+ - `half_precision_backend`: auto
731
+ - `bf16_full_eval`: False
732
+ - `fp16_full_eval`: False
733
+ - `tf32`: True
734
+ - `local_rank`: 0
735
+ - `ddp_backend`: None
736
+ - `tpu_num_cores`: None
737
+ - `tpu_metrics_debug`: False
738
+ - `debug`: []
739
+ - `dataloader_drop_last`: False
740
+ - `dataloader_num_workers`: 0
741
+ - `dataloader_prefetch_factor`: None
742
+ - `past_index`: -1
743
+ - `disable_tqdm`: False
744
+ - `remove_unused_columns`: True
745
+ - `label_names`: None
746
+ - `load_best_model_at_end`: True
747
+ - `ignore_data_skip`: False
748
+ - `fsdp`: []
749
+ - `fsdp_min_num_params`: 0
750
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
751
+ - `fsdp_transformer_layer_cls_to_wrap`: None
752
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
753
+ - `deepspeed`: None
754
+ - `label_smoothing_factor`: 0.0
755
+ - `optim`: adamw_torch_fused
756
+ - `optim_args`: None
757
+ - `adafactor`: False
758
+ - `group_by_length`: False
759
+ - `length_column_name`: length
760
+ - `ddp_find_unused_parameters`: None
761
+ - `ddp_bucket_cap_mb`: None
762
+ - `ddp_broadcast_buffers`: False
763
+ - `dataloader_pin_memory`: True
764
+ - `dataloader_persistent_workers`: False
765
+ - `skip_memory_metrics`: True
766
+ - `use_legacy_prediction_loop`: False
767
+ - `push_to_hub`: False
768
+ - `resume_from_checkpoint`: None
769
+ - `hub_model_id`: None
770
+ - `hub_strategy`: every_save
771
+ - `hub_private_repo`: False
772
+ - `hub_always_push`: False
773
+ - `gradient_checkpointing`: False
774
+ - `gradient_checkpointing_kwargs`: None
775
+ - `include_inputs_for_metrics`: False
776
+ - `eval_do_concat_batches`: True
777
+ - `fp16_backend`: auto
778
+ - `push_to_hub_model_id`: None
779
+ - `push_to_hub_organization`: None
780
+ - `mp_parameters`:
781
+ - `auto_find_batch_size`: False
782
+ - `full_determinism`: False
783
+ - `torchdynamo`: None
784
+ - `ray_scope`: last
785
+ - `ddp_timeout`: 1800
786
+ - `torch_compile`: False
787
+ - `torch_compile_backend`: None
788
+ - `torch_compile_mode`: None
789
+ - `dispatch_batches`: None
790
+ - `split_batches`: None
791
+ - `include_tokens_per_second`: False
792
+ - `include_num_input_tokens_seen`: False
793
+ - `neftune_noise_alpha`: None
794
+ - `optim_target_modules`: None
795
+ - `batch_eval_metrics`: False
796
+ - `eval_on_start`: False
797
+ - `eval_use_gather_object`: False
798
+ - `batch_sampler`: no_duplicates
799
+ - `multi_dataset_batch_sampler`: proportional
800
+
801
+ </details>
802
+
803
+ ### Training Logs
804
+ | Epoch | Step | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
805
+ |:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
806
+ | 0.2914 | 10 | 3.6318 | - | - | - | - | - | - |
807
+ | 0.5829 | 20 | 2.329 | - | - | - | - | - | - |
808
+ | 0.8743 | 30 | 1.5614 | - | - | - | - | - | - |
809
+ | 0.9909 | 34 | - | 0.2055 | 0.1998 | 0.2020 | 0.2001 | 0.1903 | 0.2019 |
810
+ | 1.1658 | 40 | 1.2383 | - | - | - | - | - | - |
811
+ | 1.4572 | 50 | 0.9323 | - | - | - | - | - | - |
812
+ | 1.7486 | 60 | 0.6616 | - | - | - | - | - | - |
813
+ | 1.9818 | 68 | - | 0.2244 | 0.2063 | 0.2223 | 0.2166 | 0.2011 | 0.2235 |
814
+ | 2.0401 | 70 | 0.5545 | - | - | - | - | - | - |
815
+ | 2.3315 | 80 | 0.5043 | - | - | - | - | - | - |
816
+ | 2.6230 | 90 | 0.3542 | - | - | - | - | - | - |
817
+ | 2.9144 | 100 | 0.3095 | - | - | - | - | - | - |
818
+ | 2.9727 | 102 | - | 0.2224 | 0.2046 | 0.2170 | 0.2100 | 0.1986 | 0.2144 |
819
+ | 3.2058 | 110 | 0.2863 | - | - | - | - | - | - |
820
+ | 3.4973 | 120 | 0.2329 | - | - | - | - | - | - |
821
+ | 3.7887 | 130 | 0.2353 | - | - | - | - | - | - |
822
+ | 3.9927 | 137 | - | 0.2197 | 0.2112 | 0.2098 | 0.2154 | 0.1949 | 0.2178 |
823
+ | 4.0801 | 140 | 0.1759 | - | - | - | - | - | - |
824
+ | 4.3716 | 150 | 0.2308 | - | - | - | - | - | - |
825
+ | 4.6630 | 160 | 0.1656 | - | - | - | - | - | - |
826
+ | **4.9545** | **170** | **0.1812** | **0.2186** | **0.2188** | **0.2113** | **0.2118** | **0.1978** | **0.2234** |
827
+
828
+ * The bold row denotes the saved checkpoint.
829
+
830
+ ### Framework Versions
831
+ - Python: 3.10.12
832
+ - Sentence Transformers: 3.1.1
833
+ - Transformers: 4.44.2
834
+ - PyTorch: 2.4.1+cu121
835
+ - Accelerate: 0.35.0.dev0
836
+ - Datasets: 3.0.1
837
+ - Tokenizers: 0.19.1
838
+
839
+ ## Citation
840
+
841
+ ### BibTeX
842
+
843
+ #### Sentence Transformers
844
+ ```bibtex
845
+ @inproceedings{reimers-2019-sentence-bert,
846
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
847
+ author = "Reimers, Nils and Gurevych, Iryna",
848
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
849
+ month = "11",
850
+ year = "2019",
851
+ publisher = "Association for Computational Linguistics",
852
+ url = "https://arxiv.org/abs/1908.10084",
853
+ }
854
+ ```
855
+
856
+ #### MatryoshkaLoss
857
+ ```bibtex
858
+ @misc{kusupati2024matryoshka,
859
+ title={Matryoshka Representation Learning},
860
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
861
+ year={2024},
862
+ eprint={2205.13147},
863
+ archivePrefix={arXiv},
864
+ primaryClass={cs.LG}
865
+ }
866
+ ```
867
+
868
+ #### MultipleNegativesRankingLoss
869
+ ```bibtex
870
+ @misc{henderson2017efficient,
871
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
872
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
873
+ year={2017},
874
+ eprint={1705.00652},
875
+ archivePrefix={arXiv},
876
+ primaryClass={cs.CL}
877
+ }
878
+ ```
879
+
880
+ <!--
881
+ ## Glossary
882
+
883
+ *Clearly define terms in order to be accessible across audiences.*
884
+ -->
885
+
886
+ <!--
887
+ ## Model Card Authors
888
+
889
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
890
+ -->
891
+
892
+ <!--
893
+ ## Model Card Contact
894
+
895
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
896
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b1741d2d6f1bb00741d0677bd307476c5e6b8fcd8f2931a2da18784d08ef983
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }