--- tags: - sentence-transformers - sentence-similarity - feature-extraction base_model: nomic-ai/modernbert-embed-base pipeline_tag: sentence-similarity library_name: sentence-transformers license: mit --- # ModernBERT Embed Base Distilled This is a [sentence-transformers](https://www.SBERT.net) model distilled from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) - **Maximum Sequence Length:** 8 192 tokens - **Output Dimensionality:** 256 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): StaticEmbedding( (embedding): EmbeddingBag(50368, 256, mode='mean') ) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("adrien-riaux/distill-modernbert-embed-base") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 256] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Distillation Process The model is distilled using [Model2Vec](https://huggingface.co/blog/Pringled/model2vec) framework. It is a new technique for creating extremely fast and small static embedding models from any Sentence Transformer. ### Framework Versions - Python: 3.11.9 - Sentence Transformers: 3.4.1 - Transformers: 4.48.3 - PyTorch: 2.2.2 - Tokenizers: 0.21.0