--- base_model: ahxt/llama2_xs_460M_experimental datasets: - Redpajama inference: false language: - en metrics: - MMLU model_creator: ahxt model_name: llama2_xs_460M_experimental pipeline_tag: text-generation quantized_by: afrideva tags: - llama2 - llama-2 - llama - llama2 architecture - gguf - ggml - quantized - q2_k - q3_k_m - q4_k_m - q5_k_m - q6_k - q8_0 --- # ahxt/llama2_xs_460M_experimental-GGUF Quantized GGUF model files for [llama2_xs_460M_experimental](https://huggingface.co/ahxt/llama2_xs_460M_experimental) from [ahxt](https://huggingface.co/ahxt) | Name | Quant method | Size | | ---- | ---- | ---- | | [llama2_xs_460m_experimental.q2_k.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q2_k.gguf) | q2_k | 212.56 MB | | [llama2_xs_460m_experimental.q3_k_m.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q3_k_m.gguf) | q3_k_m | 238.87 MB | | [llama2_xs_460m_experimental.q4_k_m.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q4_k_m.gguf) | q4_k_m | 288.51 MB | | [llama2_xs_460m_experimental.q5_k_m.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q5_k_m.gguf) | q5_k_m | 333.29 MB | | [llama2_xs_460m_experimental.q6_k.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q6_k.gguf) | q6_k | 380.87 MB | | [llama2_xs_460m_experimental.q8_0.gguf](https://huggingface.co/afrideva/llama2_xs_460M_experimental-GGUF/resolve/main/llama2_xs_460m_experimental.q8_0.gguf) | q8_0 | 492.67 MB | ## Original Model Card: # LLaMa Lite: Reduced-Scale, Experimental Versions of LLaMA and LLaMa 2 In this series of repos, we present an open-source reproduction of Meta AI's [LLaMA](https://ai.meta.com/blog/large-language-model-llama-meta-ai/) and [LLaMa 2](https://ai.meta.com/llama/) large language models. However, with significantly reduced model sizes, the experimental version of [llama1_s](https://huggingface.co/ahxt/llama1_s_1.8B_experimental) has 1.8B parameters, and the experimental version of [llama2_xs](https://huggingface.co/ahxt/llama2_xs_460M_experimental) has 460M parameters. ('s' stands for small, while 'xs' denotes extra small). ## Dataset and Tokenization We train our models on part of [RedPajama](https://www.together.xyz/blog/redpajama) dataset. We use the [GPT2Tokenizer](https://huggingface.co/docs/transformers/v4.31.0/en/model_doc/gpt2#transformers.GPT2Tokenizer) to tokenize the text. ### Using with HuggingFace Transformers The experimental checkpoints can be directly loaded by [Transformers](https://huggingface.co/transformers/) library. The following code snippet shows how to load the our experimental model and generate text with it. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM # model_path = 'ahxt/llama2_xs_460M_experimental' model_path = 'ahxt/llama1_s_1.8B_experimental' model = AutoModelForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) model.eval() prompt = 'Q: What is the largest bird?\nA:' input_ids = tokenizer(prompt, return_tensors="pt").input_ids tokens = model.generate(input_ids, max_length=20) print( tokenizer.decode(tokens[0].tolist(), skip_special_tokens=True) ) # Q: What is the largest bird?\nA: The largest bird is the bald eagle. ``` ## Evaluation We evaluate our models on the MMLU task markdown table | Models | #parameters |zero-shot | 5-shot | | --- | --- | --- | --- | | llama | 7B | 28.46 | 35.05 | | openllama | 3B | 24.90 | 26.71 | |TinyLlama-1.1B-step-50K-105b | 1.1B | 19.00 | 26.53 | | llama2_xs_460M | 0.46B | 21.13 | 26.39 | ## Contact This experimental version is developed by: [Xiaotian Han](https://ahxt.github.io/) from Texas A&M University. And these experimental verisons are for research only. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ahxt__llama2_xs_460M_experimental) | Metric | Value | |-----------------------|---------------------------| | Avg. | 26.65 | | ARC (25-shot) | 24.91 | | HellaSwag (10-shot) | 38.47 | | MMLU (5-shot) | 26.17 | | TruthfulQA (0-shot) | 41.59 | | Winogrande (5-shot) | 49.88 | | GSM8K (5-shot) | 0.0 | | DROP (3-shot) | 5.51 |