File size: 5,814 Bytes
79b5c68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
base_model: mwitiderrick/open_llama_3b_code_instruct_0.1
created_by: mwitiderrick
datasets:
- mwitiderrick/AlpacaCode
inference: false
language:
- en
library_name: transformers
license: apache-2.0
model-index:
- name: mwitiderrick/open_llama_3b_instruct_v_0.2
results:
- dataset:
name: hellaswag
type: hellaswag
metrics:
- name: hellaswag(0-Shot)
type: hellaswag (0-Shot)
value: 0.6581
task:
type: text-generation
- dataset:
name: winogrande
type: winogrande
metrics:
- name: winogrande(0-Shot)
type: winogrande (0-Shot)
value: 0.6267
task:
type: text-generation
- dataset:
name: arc_challenge
type: arc_challenge
metrics:
- name: arc_challenge(0-Shot)
type: arc_challenge (0-Shot)
value: 0.3712
source:
name: open_llama_3b_instruct_v_0.2 model card
url: https://huggingface.co/mwitiderrick/open_llama_3b_instruct_v_0.2
task:
type: text-generation
model_creator: mwitiderrick
model_name: open_llama_3b_code_instruct_0.1
model_type: llama
pipeline_tag: text-generation
prompt_template: '### Instruction:\n
{prompt}
### Response:
'
quantized_by: afrideva
tags:
- transformers
- gguf
- ggml
- quantized
- q2_k
- q3_k_m
- q4_k_m
- q5_k_m
- q6_k
- q8_0
---
# mwitiderrick/open_llama_3b_code_instruct_0.1-GGUF
Quantized GGUF model files for [open_llama_3b_code_instruct_0.1](https://huggingface.co/mwitiderrick/open_llama_3b_code_instruct_0.1) from [mwitiderrick](https://huggingface.co/mwitiderrick)
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [open_llama_3b_code_instruct_0.1.fp16.gguf](https://huggingface.co/afrideva/open_llama_3b_code_instruct_0.1-GGUF/resolve/main/open_llama_3b_code_instruct_0.1.fp16.gguf) | fp16 | 6.86 GB |
| [open_llama_3b_code_instruct_0.1.q2_k.gguf](https://huggingface.co/afrideva/open_llama_3b_code_instruct_0.1-GGUF/resolve/main/open_llama_3b_code_instruct_0.1.q2_k.gguf) | q2_k | 2.15 GB |
| [open_llama_3b_code_instruct_0.1.q3_k_m.gguf](https://huggingface.co/afrideva/open_llama_3b_code_instruct_0.1-GGUF/resolve/main/open_llama_3b_code_instruct_0.1.q3_k_m.gguf) | q3_k_m | 2.27 GB |
| [open_llama_3b_code_instruct_0.1.q4_k_m.gguf](https://huggingface.co/afrideva/open_llama_3b_code_instruct_0.1-GGUF/resolve/main/open_llama_3b_code_instruct_0.1.q4_k_m.gguf) | q4_k_m | 2.58 GB |
| [open_llama_3b_code_instruct_0.1.q5_k_m.gguf](https://huggingface.co/afrideva/open_llama_3b_code_instruct_0.1-GGUF/resolve/main/open_llama_3b_code_instruct_0.1.q5_k_m.gguf) | q5_k_m | 2.76 GB |
| [open_llama_3b_code_instruct_0.1.q6_k.gguf](https://huggingface.co/afrideva/open_llama_3b_code_instruct_0.1-GGUF/resolve/main/open_llama_3b_code_instruct_0.1.q6_k.gguf) | q6_k | 3.64 GB |
| [open_llama_3b_code_instruct_0.1.q8_0.gguf](https://huggingface.co/afrideva/open_llama_3b_code_instruct_0.1-GGUF/resolve/main/open_llama_3b_code_instruct_0.1.q8_0.gguf) | q8_0 | 3.64 GB |
## Original Model Card:
# OpenLLaMA Code Instruct: An Open Reproduction of LLaMA
This is an [OpenLlama model](https://huggingface.co/openlm-research/open_llama_3b) that has been fine-tuned on 1 epoch of the
[AlpacaCode](https://huggingface.co/datasets/mwitiderrick/AlpacaCode) dataset (122K rows).
## Prompt Template
```
### Instruction:
{query}
### Response:
<Leave new line for model to respond>
```
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline
tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/open_llama_3b_code_instruct_0.1")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/open_llama_3b_code_instruct_0.1")
query = "Write a quick sort algorithm in Python"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
output = text_gen(f"### Instruction:\n{query}\n### Response:\n")
print(output[0]['generated_text'])
"""
### Instruction:
write a quick sort algorithm in Python
### Response:
def quick_sort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quick_sort(left) + middle + quick_sort(right)
arr = [5,2,4,3,1]
print(quick_sort(arr))
"""
[1, 2, 3, 4, 5]
"""
```
## Metrics
[Detailed metrics](https://huggingface.co/datasets/open-llm-leaderboard/details_mwitiderrick__open_llama_3b_code_instruct_0.1)
```
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
|----------|-------|------|-----:|------|-----:|---|-----:|
|winogrande|Yaml |none | 0|acc |0.6267|± |0.0136|
|hellaswag|Yaml |none | 0|acc |0.4962|± |0.0050|
| | |none | 0|acc_norm|0.6581|± |0.0047|
|arc_challenge|Yaml |none | 0|acc |0.3481|± |0.0139|
| | |none | 0|acc_norm|0.3712|± |0.0141|
|truthfulqa|N/A |none | 0|bleu_max | 24.2580|± |0.5985|
| | |none | 0|bleu_acc | 0.2876|± |0.0003|
| | |none | 0|bleu_diff | -8.3685|± |0.6065|
| | |none | 0|rouge1_max | 49.3907|± |0.7350|
| | |none | 0|rouge1_acc | 0.2558|± |0.0002|
| | |none | 0|rouge1_diff|-10.6617|± |0.6450|
| | |none | 0|rouge2_max | 32.4189|± |0.9587|
| | |none | 0|rouge2_acc | 0.2142|± |0.0002|
| | |none | 0|rouge2_diff|-12.9903|± |0.9539|
| | |none | 0|rougeL_max | 46.2337|± |0.7493|
| | |none | 0|rougeL_acc | 0.2424|± |0.0002|
| | |none | 0|rougeL_diff|-11.0285|± |0.6576|
| | |none | 0|acc | 0.3072|± |0.0405|
``` |