Update README.md
Browse files
README.md
CHANGED
@@ -28,15 +28,15 @@ library_name: transformers
|
|
28 |
### 학습 방법
|
29 |
|
30 |
```python
|
|
|
|
|
31 |
|
32 |
from transformers import RobertaTokenizer, RobertaForMaskedLM
|
33 |
from transformers import AutoModel, AutoTokenizer
|
34 |
-
|
35 |
model = RobertaForMaskedLM.from_pretrained(base_model)
|
36 |
tokenizer = AutoTokenizer.from_pretrained(base_tokenizer)
|
37 |
|
38 |
from transformers import LineByLineTextDataset
|
39 |
-
|
40 |
dataset = LineByLineTextDataset(
|
41 |
tokenizer=tokenizer,
|
42 |
file_path=fpath_dataset,
|
@@ -44,13 +44,11 @@ dataset = LineByLineTextDataset(
|
|
44 |
)
|
45 |
|
46 |
from transformers import DataCollatorForLanguageModeling
|
47 |
-
|
48 |
data_collator = DataCollatorForLanguageModeling(
|
49 |
tokenizer=tokenizer, mlm=True, mlm_probability=0.15
|
50 |
)
|
51 |
|
52 |
from transformers import Trainer, TrainingArguments
|
53 |
-
|
54 |
training_args = TrainingArguments(
|
55 |
output_dir=output_dir,
|
56 |
overwrite_output_dir=True,
|
@@ -69,29 +67,6 @@ trainer = Trainer(
|
|
69 |
)
|
70 |
|
71 |
train_metrics = trainer.train()
|
72 |
-
|
73 |
-
|
74 |
trainer.save_model(output_dir)
|
75 |
trainer.push_to_hub()
|
76 |
```
|
77 |
-
|
78 |
-
### 학습용 configuration
|
79 |
-
|
80 |
-
- number of epochs
|
81 |
-
```bash
|
82 |
-
epochs = 50
|
83 |
-
```
|
84 |
-
|
85 |
-
- JSON file
|
86 |
-
```json
|
87 |
-
[
|
88 |
-
{'basemodel' : 'againeureka/klue_roberta_base_for_legal',
|
89 |
-
'basetokenizer' : 'klue/roberta-base',
|
90 |
-
'trainmodel' : 'againeureka/toulmin_classifier8_klue_roberta_base_retrained6',
|
91 |
-
'batchsize' : 92,
|
92 |
-
'epochs' : epochs,
|
93 |
-
'push_to_hub' : True,
|
94 |
-
'is_on' : True,
|
95 |
-
},
|
96 |
-
]
|
97 |
-
```
|
|
|
28 |
### 학습 방법
|
29 |
|
30 |
```python
|
31 |
+
base_model = 'klue/roberta-base'
|
32 |
+
base_tokenizer = 'klue/roberta-base'
|
33 |
|
34 |
from transformers import RobertaTokenizer, RobertaForMaskedLM
|
35 |
from transformers import AutoModel, AutoTokenizer
|
|
|
36 |
model = RobertaForMaskedLM.from_pretrained(base_model)
|
37 |
tokenizer = AutoTokenizer.from_pretrained(base_tokenizer)
|
38 |
|
39 |
from transformers import LineByLineTextDataset
|
|
|
40 |
dataset = LineByLineTextDataset(
|
41 |
tokenizer=tokenizer,
|
42 |
file_path=fpath_dataset,
|
|
|
44 |
)
|
45 |
|
46 |
from transformers import DataCollatorForLanguageModeling
|
|
|
47 |
data_collator = DataCollatorForLanguageModeling(
|
48 |
tokenizer=tokenizer, mlm=True, mlm_probability=0.15
|
49 |
)
|
50 |
|
51 |
from transformers import Trainer, TrainingArguments
|
|
|
52 |
training_args = TrainingArguments(
|
53 |
output_dir=output_dir,
|
54 |
overwrite_output_dir=True,
|
|
|
67 |
)
|
68 |
|
69 |
train_metrics = trainer.train()
|
|
|
|
|
70 |
trainer.save_model(output_dir)
|
71 |
trainer.push_to_hub()
|
72 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|