ageng-anugrah
commited on
Commit
•
5ef7b11
1
Parent(s):
77f3817
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: id
|
3 |
+
tags:
|
4 |
+
- indobert
|
5 |
+
- indobenchmark
|
6 |
+
---
|
7 |
+
|
8 |
+
## How to use
|
9 |
+
|
10 |
+
### Load model and tokenizer
|
11 |
+
```python
|
12 |
+
from transformers import AutoTokenizer, AutoModel
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("ageng-anugrah/indobert-large-p2-finetuned-ner")
|
15 |
+
model = AutoModel.from_pretrained("ageng-anugrah/indobert-large-p2-finetuned-ner")
|
16 |
+
```
|
17 |
+
|
18 |
+
### Extract NER Tag
|
19 |
+
```python
|
20 |
+
import torch
|
21 |
+
def predict(model, tokenizer, sentence):
|
22 |
+
# will be moved to config later
|
23 |
+
ids_to_labels = {
|
24 |
+
0: 'B-ORGANISATION',
|
25 |
+
1: 'B-PERSON',
|
26 |
+
2: 'B-PLACE',
|
27 |
+
3: 'I-ORGANISATION',
|
28 |
+
4: 'I-PERSON',
|
29 |
+
5: 'I-PLACE',
|
30 |
+
6: 'O',
|
31 |
+
}
|
32 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
+
inputs = tokenizer(sentence.split(),
|
34 |
+
is_split_into_words = True,
|
35 |
+
return_offsets_mapping=True,
|
36 |
+
return_tensors="pt")
|
37 |
+
|
38 |
+
model.to(device)
|
39 |
+
# move to gpu
|
40 |
+
ids = inputs["input_ids"].to(device)
|
41 |
+
mask = inputs["attention_mask"].to(device)
|
42 |
+
|
43 |
+
# forward pass
|
44 |
+
outputs = model(ids, attention_mask=mask)
|
45 |
+
logits = outputs[0]
|
46 |
+
|
47 |
+
active_logits = logits.view(-1, model.num_labels) # shape (batch_size * seq_len, num_labels)
|
48 |
+
flattened_predictions = torch.argmax(active_logits, axis=1) # shape (batch_size*seq_len,) - predictions at the token level
|
49 |
+
|
50 |
+
tokens = tokenizer.convert_ids_to_tokens(ids.squeeze().tolist())
|
51 |
+
token_predictions = [ids_to_labels[i] for i in flattened_predictions.cpu().numpy()]
|
52 |
+
wp_preds = list(zip(tokens, token_predictions)) # list of tuples. Each tuple = (wordpiece, prediction)
|
53 |
+
|
54 |
+
prediction = []
|
55 |
+
for token_pred, mapping in zip(wp_preds, inputs["offset_mapping"].squeeze().tolist()):
|
56 |
+
#only predictions on first word pieces are important
|
57 |
+
if mapping[0] == 0 and mapping[1] != 0:
|
58 |
+
prediction.append(token_pred[1])
|
59 |
+
else:
|
60 |
+
continue
|
61 |
+
|
62 |
+
return sentence.split(), prediction
|
63 |
+
|
64 |
+
sentence = "BJ Habibie adalah Presiden Indonesia ke-3"
|
65 |
+
words, labels = predict(model, tokenizer, sentence)
|
66 |
+
```
|