agentlans commited on
Commit
08d031a
·
verified ·
1 Parent(s): 6c37ba2

Upload 12 files

Browse files
README.md ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: deberta-v3-xsmall-quality-pretrain
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: deberta-v3-xsmall-quality
8
+ results: []
9
+ ---
10
+
11
+ # English Text Quality Classifier
12
+
13
+ The **deberta-v3-xsmall-quality** model is designed to evaluate text quality by using a composite score that combines the results from multiple classifiers. This method provides a more thorough assessment than traditional educational metrics, making it ideal for a variety of NLP and AI applications.
14
+
15
+ ## Intended Uses & Limitations
16
+
17
+ **Intended Uses**:
18
+ - Quality assessment of text across various domains.
19
+ - Enhancing NLP applications by providing a robust measure of text quality.
20
+ - Supporting research and development in AI by offering insights into text quality metrics.
21
+
22
+ **Limitations**:
23
+ - The model's performance may vary depending on the specific characteristics of the input text.
24
+ - It's also a black box. Hard to explain why something is classified as higher quality than another.
25
+ - It is essential to consider the context in which the model is applied, as different domains may have unique quality requirements.
26
+ - May still be biased towards non-fiction and educational genres.
27
+
28
+ ## Training and Evaluation Data
29
+
30
+ The model was trained on a dataset comprising **100,000 sentences** sourced from five distinct datasets, with **20,000 sentences** drawn from each of the following:
31
+
32
+ 1. **allenai/c4**
33
+ 2. **HuggingFaceFW/fineweb-edu**
34
+ 3. **monology/pile-uncopyrighted**
35
+ 4. **agentlans/common-crawl-sample**
36
+ 5. **agentlans/wikipedia-paragraphs**
37
+
38
+ This diverse dataset enables the model to generalize well across different text types and domains.
39
+
40
+ ## How to use
41
+
42
+ ```python
43
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
44
+ import torch
45
+
46
+ model_name="agentlans/deberta-v3-xsmall-quality"
47
+
48
+ # Put model on GPU or else CPU
49
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
50
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
51
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
52
+ model = model.to(device)
53
+
54
+ def quality(text):
55
+ """Processes the text using the model and returns its logits.
56
+ In this case, it's interpreted as the the combined quality score for that text."""
57
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
58
+ with torch.no_grad():
59
+ logits = model(**inputs).logits.squeeze().cpu()
60
+ return logits.tolist()
61
+
62
+ # Example usage
63
+ text = [
64
+ "Congratulations! You've won a $1,000 gift card! Click here to claim your prize now!!!",
65
+ "Page 1 2 3 4 5 Next Last>>",
66
+ "Urgent: Your account has been compromised! Click this link to verify your identity and secure your account immediately!!!",
67
+ "Today marks a significant milestone in our journey towards sustainability! 🌍✨ We’re excited to announce our partnership with local organizations to plant 10,000 trees in our community this fall. Join us in making a positive impact on our environment!",
68
+ "In recent years, the impact of climate change has become increasingly evident, affecting ecosystems and human livelihoods across the globe."]
69
+
70
+ result = quality(text)
71
+ [round(x, 2) for x in result] # Estimated quality for each text [0.19, -3.06, 0.15, 1.77, 1.34]
72
+ ```
73
+
74
+ ## Training Procedure
75
+
76
+ <details>
77
+ <summary>Training hyperparameters, results, framework</summary>
78
+
79
+ ### Training Hyperparameters
80
+
81
+ The following hyperparameters were utilized during training:
82
+ - **Learning Rate**: 5e-05
83
+ - **Training Batch Size**: 8
84
+ - **Evaluation Batch Size**: 8
85
+ - **Seed**: 42
86
+ - **Optimizer**: Adam with betas=(0.9, 0.999) and epsilon=1e-08
87
+ - **Learning Rate Scheduler Type**: Linear
88
+ - **Number of Epochs**: 3.0
89
+
90
+ ### Training Results
91
+
92
+ - **Loss**: 0.1280
93
+ - **Mean Squared Error (MSE)**: 0.1280
94
+
95
+ ### Framework Versions
96
+
97
+ The model was developed using the following frameworks and libraries:
98
+ - **Transformers**: 4.44.2
99
+ - **PyTorch**: 2.2.2+cu121
100
+ - **Datasets**: 2.18.0
101
+ - **Tokenizers**: 0.19.1
102
+ </details>
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
all_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_loss": 0.1280035674571991,
4
+ "eval_mse": 0.12800357063188794,
5
+ "eval_runtime": 9.6254,
6
+ "eval_samples": 10000,
7
+ "eval_samples_per_second": 1038.92,
8
+ "eval_steps_per_second": 129.865,
9
+ "total_flos": 4446488701440000.0,
10
+ "train_loss": 0.12363309427897136,
11
+ "train_runtime": 1375.441,
12
+ "train_samples": 90000,
13
+ "train_samples_per_second": 196.301,
14
+ "train_steps_per_second": 24.538
15
+ }
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deberta-v3-xsmall-quality-pretrain",
3
+ "architectures": [
4
+ "DebertaV2ForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "finetuning_task": "text-classification",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-07,
20
+ "max_position_embeddings": 512,
21
+ "max_relative_positions": -1,
22
+ "model_type": "deberta-v2",
23
+ "norm_rel_ebd": "layer_norm",
24
+ "num_attention_heads": 6,
25
+ "num_hidden_layers": 12,
26
+ "pad_token_id": 0,
27
+ "pooler_dropout": 0,
28
+ "pooler_hidden_act": "gelu",
29
+ "pooler_hidden_size": 384,
30
+ "pos_att_type": [
31
+ "p2c",
32
+ "c2p"
33
+ ],
34
+ "position_biased_input": false,
35
+ "position_buckets": 256,
36
+ "problem_type": "regression",
37
+ "relative_attention": true,
38
+ "share_att_key": true,
39
+ "torch_dtype": "float32",
40
+ "transformers_version": "4.44.2",
41
+ "type_vocab_size": 0,
42
+ "vocab_size": 128100
43
+ }
eval_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_loss": 0.1280035674571991,
4
+ "eval_mse": 0.12800357063188794,
5
+ "eval_runtime": 9.6254,
6
+ "eval_samples": 10000,
7
+ "eval_samples_per_second": 1038.92,
8
+ "eval_steps_per_second": 129.865
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa511c11ec7e034ea02c0d29d8b93bfab1a3175bd0502ff717634440564f2031
3
+ size 283345892
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "sp_model_kwargs": {},
54
+ "split_by_punct": false,
55
+ "tokenizer_class": "DebertaV2Tokenizer",
56
+ "unk_token": "[UNK]",
57
+ "vocab_type": "spm"
58
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 4446488701440000.0,
4
+ "train_loss": 0.12363309427897136,
5
+ "train_runtime": 1375.441,
6
+ "train_samples": 90000,
7
+ "train_samples_per_second": 196.301,
8
+ "train_steps_per_second": 24.538
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,511 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 33750,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.044444444444444446,
13
+ "grad_norm": 3.210815906524658,
14
+ "learning_rate": 4.925925925925926e-05,
15
+ "loss": 0.4315,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.08888888888888889,
20
+ "grad_norm": 8.126620292663574,
21
+ "learning_rate": 4.851851851851852e-05,
22
+ "loss": 0.2862,
23
+ "step": 1000
24
+ },
25
+ {
26
+ "epoch": 0.13333333333333333,
27
+ "grad_norm": 4.665143013000488,
28
+ "learning_rate": 4.7777777777777784e-05,
29
+ "loss": 0.237,
30
+ "step": 1500
31
+ },
32
+ {
33
+ "epoch": 0.17777777777777778,
34
+ "grad_norm": 2.0566887855529785,
35
+ "learning_rate": 4.703703703703704e-05,
36
+ "loss": 0.2251,
37
+ "step": 2000
38
+ },
39
+ {
40
+ "epoch": 0.2222222222222222,
41
+ "grad_norm": 7.968118667602539,
42
+ "learning_rate": 4.62962962962963e-05,
43
+ "loss": 0.2239,
44
+ "step": 2500
45
+ },
46
+ {
47
+ "epoch": 0.26666666666666666,
48
+ "grad_norm": 1.2121827602386475,
49
+ "learning_rate": 4.555555555555556e-05,
50
+ "loss": 0.2203,
51
+ "step": 3000
52
+ },
53
+ {
54
+ "epoch": 0.3111111111111111,
55
+ "grad_norm": 3.395099401473999,
56
+ "learning_rate": 4.481481481481482e-05,
57
+ "loss": 0.2111,
58
+ "step": 3500
59
+ },
60
+ {
61
+ "epoch": 0.35555555555555557,
62
+ "grad_norm": 1.9526039361953735,
63
+ "learning_rate": 4.4074074074074076e-05,
64
+ "loss": 0.193,
65
+ "step": 4000
66
+ },
67
+ {
68
+ "epoch": 0.4,
69
+ "grad_norm": 3.2926955223083496,
70
+ "learning_rate": 4.3333333333333334e-05,
71
+ "loss": 0.1853,
72
+ "step": 4500
73
+ },
74
+ {
75
+ "epoch": 0.4444444444444444,
76
+ "grad_norm": 2.8749849796295166,
77
+ "learning_rate": 4.259259259259259e-05,
78
+ "loss": 0.1675,
79
+ "step": 5000
80
+ },
81
+ {
82
+ "epoch": 0.4888888888888889,
83
+ "grad_norm": 6.5106706619262695,
84
+ "learning_rate": 4.185185185185185e-05,
85
+ "loss": 0.1889,
86
+ "step": 5500
87
+ },
88
+ {
89
+ "epoch": 0.5333333333333333,
90
+ "grad_norm": 1.893872618675232,
91
+ "learning_rate": 4.111111111111111e-05,
92
+ "loss": 0.2002,
93
+ "step": 6000
94
+ },
95
+ {
96
+ "epoch": 0.5777777777777777,
97
+ "grad_norm": 4.822785377502441,
98
+ "learning_rate": 4.0370370370370374e-05,
99
+ "loss": 0.1802,
100
+ "step": 6500
101
+ },
102
+ {
103
+ "epoch": 0.6222222222222222,
104
+ "grad_norm": 2.410318374633789,
105
+ "learning_rate": 3.962962962962963e-05,
106
+ "loss": 0.1578,
107
+ "step": 7000
108
+ },
109
+ {
110
+ "epoch": 0.6666666666666666,
111
+ "grad_norm": 7.345259189605713,
112
+ "learning_rate": 3.888888888888889e-05,
113
+ "loss": 0.1668,
114
+ "step": 7500
115
+ },
116
+ {
117
+ "epoch": 0.7111111111111111,
118
+ "grad_norm": 2.6905734539031982,
119
+ "learning_rate": 3.814814814814815e-05,
120
+ "loss": 0.1726,
121
+ "step": 8000
122
+ },
123
+ {
124
+ "epoch": 0.7555555555555555,
125
+ "grad_norm": 7.399478912353516,
126
+ "learning_rate": 3.740740740740741e-05,
127
+ "loss": 0.1586,
128
+ "step": 8500
129
+ },
130
+ {
131
+ "epoch": 0.8,
132
+ "grad_norm": 1.8845775127410889,
133
+ "learning_rate": 3.6666666666666666e-05,
134
+ "loss": 0.1629,
135
+ "step": 9000
136
+ },
137
+ {
138
+ "epoch": 0.8444444444444444,
139
+ "grad_norm": 3.4357192516326904,
140
+ "learning_rate": 3.592592592592593e-05,
141
+ "loss": 0.1674,
142
+ "step": 9500
143
+ },
144
+ {
145
+ "epoch": 0.8888888888888888,
146
+ "grad_norm": 1.8075140714645386,
147
+ "learning_rate": 3.518518518518519e-05,
148
+ "loss": 0.1671,
149
+ "step": 10000
150
+ },
151
+ {
152
+ "epoch": 0.9333333333333333,
153
+ "grad_norm": 2.545607089996338,
154
+ "learning_rate": 3.444444444444445e-05,
155
+ "loss": 0.1595,
156
+ "step": 10500
157
+ },
158
+ {
159
+ "epoch": 0.9777777777777777,
160
+ "grad_norm": 2.33050799369812,
161
+ "learning_rate": 3.3703703703703706e-05,
162
+ "loss": 0.1655,
163
+ "step": 11000
164
+ },
165
+ {
166
+ "epoch": 1.0222222222222221,
167
+ "grad_norm": 1.9340065717697144,
168
+ "learning_rate": 3.2962962962962964e-05,
169
+ "loss": 0.1349,
170
+ "step": 11500
171
+ },
172
+ {
173
+ "epoch": 1.0666666666666667,
174
+ "grad_norm": 1.3230476379394531,
175
+ "learning_rate": 3.222222222222223e-05,
176
+ "loss": 0.1069,
177
+ "step": 12000
178
+ },
179
+ {
180
+ "epoch": 1.1111111111111112,
181
+ "grad_norm": 4.054622650146484,
182
+ "learning_rate": 3.148148148148148e-05,
183
+ "loss": 0.1098,
184
+ "step": 12500
185
+ },
186
+ {
187
+ "epoch": 1.1555555555555554,
188
+ "grad_norm": 4.885370254516602,
189
+ "learning_rate": 3.074074074074074e-05,
190
+ "loss": 0.1162,
191
+ "step": 13000
192
+ },
193
+ {
194
+ "epoch": 1.2,
195
+ "grad_norm": 3.5849854946136475,
196
+ "learning_rate": 3e-05,
197
+ "loss": 0.1077,
198
+ "step": 13500
199
+ },
200
+ {
201
+ "epoch": 1.2444444444444445,
202
+ "grad_norm": 9.765403747558594,
203
+ "learning_rate": 2.925925925925926e-05,
204
+ "loss": 0.1181,
205
+ "step": 14000
206
+ },
207
+ {
208
+ "epoch": 1.2888888888888888,
209
+ "grad_norm": 3.879992961883545,
210
+ "learning_rate": 2.851851851851852e-05,
211
+ "loss": 0.1011,
212
+ "step": 14500
213
+ },
214
+ {
215
+ "epoch": 1.3333333333333333,
216
+ "grad_norm": 2.2347288131713867,
217
+ "learning_rate": 2.777777777777778e-05,
218
+ "loss": 0.1175,
219
+ "step": 15000
220
+ },
221
+ {
222
+ "epoch": 1.3777777777777778,
223
+ "grad_norm": 7.474192142486572,
224
+ "learning_rate": 2.7037037037037037e-05,
225
+ "loss": 0.1073,
226
+ "step": 15500
227
+ },
228
+ {
229
+ "epoch": 1.4222222222222223,
230
+ "grad_norm": 4.1693291664123535,
231
+ "learning_rate": 2.6296296296296296e-05,
232
+ "loss": 0.0995,
233
+ "step": 16000
234
+ },
235
+ {
236
+ "epoch": 1.4666666666666668,
237
+ "grad_norm": 1.8383170366287231,
238
+ "learning_rate": 2.5555555555555554e-05,
239
+ "loss": 0.1145,
240
+ "step": 16500
241
+ },
242
+ {
243
+ "epoch": 1.511111111111111,
244
+ "grad_norm": 0.694262683391571,
245
+ "learning_rate": 2.4814814814814816e-05,
246
+ "loss": 0.115,
247
+ "step": 17000
248
+ },
249
+ {
250
+ "epoch": 1.5555555555555556,
251
+ "grad_norm": 0.9633584022521973,
252
+ "learning_rate": 2.4074074074074074e-05,
253
+ "loss": 0.1024,
254
+ "step": 17500
255
+ },
256
+ {
257
+ "epoch": 1.6,
258
+ "grad_norm": 2.0199620723724365,
259
+ "learning_rate": 2.3333333333333336e-05,
260
+ "loss": 0.1011,
261
+ "step": 18000
262
+ },
263
+ {
264
+ "epoch": 1.6444444444444444,
265
+ "grad_norm": 1.8132920265197754,
266
+ "learning_rate": 2.2592592592592594e-05,
267
+ "loss": 0.1041,
268
+ "step": 18500
269
+ },
270
+ {
271
+ "epoch": 1.6888888888888889,
272
+ "grad_norm": 8.3416748046875,
273
+ "learning_rate": 2.1851851851851852e-05,
274
+ "loss": 0.1144,
275
+ "step": 19000
276
+ },
277
+ {
278
+ "epoch": 1.7333333333333334,
279
+ "grad_norm": 1.4581434726715088,
280
+ "learning_rate": 2.111111111111111e-05,
281
+ "loss": 0.0955,
282
+ "step": 19500
283
+ },
284
+ {
285
+ "epoch": 1.7777777777777777,
286
+ "grad_norm": 3.9014599323272705,
287
+ "learning_rate": 2.037037037037037e-05,
288
+ "loss": 0.104,
289
+ "step": 20000
290
+ },
291
+ {
292
+ "epoch": 1.8222222222222222,
293
+ "grad_norm": 2.070230007171631,
294
+ "learning_rate": 1.962962962962963e-05,
295
+ "loss": 0.0995,
296
+ "step": 20500
297
+ },
298
+ {
299
+ "epoch": 1.8666666666666667,
300
+ "grad_norm": 0.8812291026115417,
301
+ "learning_rate": 1.888888888888889e-05,
302
+ "loss": 0.0982,
303
+ "step": 21000
304
+ },
305
+ {
306
+ "epoch": 1.911111111111111,
307
+ "grad_norm": 1.1036711931228638,
308
+ "learning_rate": 1.814814814814815e-05,
309
+ "loss": 0.0987,
310
+ "step": 21500
311
+ },
312
+ {
313
+ "epoch": 1.9555555555555557,
314
+ "grad_norm": 0.6822977066040039,
315
+ "learning_rate": 1.740740740740741e-05,
316
+ "loss": 0.101,
317
+ "step": 22000
318
+ },
319
+ {
320
+ "epoch": 2.0,
321
+ "grad_norm": 4.314443111419678,
322
+ "learning_rate": 1.6666666666666667e-05,
323
+ "loss": 0.0979,
324
+ "step": 22500
325
+ },
326
+ {
327
+ "epoch": 2.0444444444444443,
328
+ "grad_norm": 3.5247573852539062,
329
+ "learning_rate": 1.5925925925925926e-05,
330
+ "loss": 0.0733,
331
+ "step": 23000
332
+ },
333
+ {
334
+ "epoch": 2.088888888888889,
335
+ "grad_norm": 0.6801110506057739,
336
+ "learning_rate": 1.5185185185185186e-05,
337
+ "loss": 0.0651,
338
+ "step": 23500
339
+ },
340
+ {
341
+ "epoch": 2.1333333333333333,
342
+ "grad_norm": 4.516416072845459,
343
+ "learning_rate": 1.4444444444444444e-05,
344
+ "loss": 0.0765,
345
+ "step": 24000
346
+ },
347
+ {
348
+ "epoch": 2.1777777777777776,
349
+ "grad_norm": 1.9308606386184692,
350
+ "learning_rate": 1.3703703703703704e-05,
351
+ "loss": 0.0707,
352
+ "step": 24500
353
+ },
354
+ {
355
+ "epoch": 2.2222222222222223,
356
+ "grad_norm": 1.1442885398864746,
357
+ "learning_rate": 1.2962962962962962e-05,
358
+ "loss": 0.0617,
359
+ "step": 25000
360
+ },
361
+ {
362
+ "epoch": 2.2666666666666666,
363
+ "grad_norm": 5.30832576751709,
364
+ "learning_rate": 1.2222222222222222e-05,
365
+ "loss": 0.0693,
366
+ "step": 25500
367
+ },
368
+ {
369
+ "epoch": 2.311111111111111,
370
+ "grad_norm": 0.5708422660827637,
371
+ "learning_rate": 1.1481481481481482e-05,
372
+ "loss": 0.0697,
373
+ "step": 26000
374
+ },
375
+ {
376
+ "epoch": 2.3555555555555556,
377
+ "grad_norm": 0.680268406867981,
378
+ "learning_rate": 1.074074074074074e-05,
379
+ "loss": 0.066,
380
+ "step": 26500
381
+ },
382
+ {
383
+ "epoch": 2.4,
384
+ "grad_norm": 0.72934889793396,
385
+ "learning_rate": 1e-05,
386
+ "loss": 0.0644,
387
+ "step": 27000
388
+ },
389
+ {
390
+ "epoch": 2.4444444444444446,
391
+ "grad_norm": 4.663362503051758,
392
+ "learning_rate": 9.259259259259259e-06,
393
+ "loss": 0.0667,
394
+ "step": 27500
395
+ },
396
+ {
397
+ "epoch": 2.488888888888889,
398
+ "grad_norm": 1.3758256435394287,
399
+ "learning_rate": 8.518518518518519e-06,
400
+ "loss": 0.0575,
401
+ "step": 28000
402
+ },
403
+ {
404
+ "epoch": 2.533333333333333,
405
+ "grad_norm": 0.8022651672363281,
406
+ "learning_rate": 7.777777777777777e-06,
407
+ "loss": 0.0621,
408
+ "step": 28500
409
+ },
410
+ {
411
+ "epoch": 2.5777777777777775,
412
+ "grad_norm": 1.576392412185669,
413
+ "learning_rate": 7.0370370370370375e-06,
414
+ "loss": 0.0586,
415
+ "step": 29000
416
+ },
417
+ {
418
+ "epoch": 2.6222222222222222,
419
+ "grad_norm": 1.166567087173462,
420
+ "learning_rate": 6.296296296296296e-06,
421
+ "loss": 0.0662,
422
+ "step": 29500
423
+ },
424
+ {
425
+ "epoch": 2.6666666666666665,
426
+ "grad_norm": 2.4423012733459473,
427
+ "learning_rate": 5.555555555555556e-06,
428
+ "loss": 0.0645,
429
+ "step": 30000
430
+ },
431
+ {
432
+ "epoch": 2.7111111111111112,
433
+ "grad_norm": 3.1122899055480957,
434
+ "learning_rate": 4.814814814814815e-06,
435
+ "loss": 0.0642,
436
+ "step": 30500
437
+ },
438
+ {
439
+ "epoch": 2.7555555555555555,
440
+ "grad_norm": 3.2840280532836914,
441
+ "learning_rate": 4.074074074074075e-06,
442
+ "loss": 0.0617,
443
+ "step": 31000
444
+ },
445
+ {
446
+ "epoch": 2.8,
447
+ "grad_norm": 0.6285051703453064,
448
+ "learning_rate": 3.3333333333333333e-06,
449
+ "loss": 0.0566,
450
+ "step": 31500
451
+ },
452
+ {
453
+ "epoch": 2.8444444444444446,
454
+ "grad_norm": 3.462080240249634,
455
+ "learning_rate": 2.5925925925925925e-06,
456
+ "loss": 0.0614,
457
+ "step": 32000
458
+ },
459
+ {
460
+ "epoch": 2.888888888888889,
461
+ "grad_norm": 2.2216219902038574,
462
+ "learning_rate": 1.8518518518518519e-06,
463
+ "loss": 0.0647,
464
+ "step": 32500
465
+ },
466
+ {
467
+ "epoch": 2.9333333333333336,
468
+ "grad_norm": 1.6926839351654053,
469
+ "learning_rate": 1.1111111111111112e-06,
470
+ "loss": 0.0611,
471
+ "step": 33000
472
+ },
473
+ {
474
+ "epoch": 2.977777777777778,
475
+ "grad_norm": 4.723779678344727,
476
+ "learning_rate": 3.703703703703704e-07,
477
+ "loss": 0.0597,
478
+ "step": 33500
479
+ },
480
+ {
481
+ "epoch": 3.0,
482
+ "step": 33750,
483
+ "total_flos": 4446488701440000.0,
484
+ "train_loss": 0.12363309427897136,
485
+ "train_runtime": 1375.441,
486
+ "train_samples_per_second": 196.301,
487
+ "train_steps_per_second": 24.538
488
+ }
489
+ ],
490
+ "logging_steps": 500,
491
+ "max_steps": 33750,
492
+ "num_input_tokens_seen": 0,
493
+ "num_train_epochs": 3,
494
+ "save_steps": 500,
495
+ "stateful_callbacks": {
496
+ "TrainerControl": {
497
+ "args": {
498
+ "should_epoch_stop": false,
499
+ "should_evaluate": false,
500
+ "should_log": false,
501
+ "should_save": true,
502
+ "should_training_stop": true
503
+ },
504
+ "attributes": {}
505
+ }
506
+ },
507
+ "total_flos": 4446488701440000.0,
508
+ "train_batch_size": 8,
509
+ "trial_name": null,
510
+ "trial_params": null
511
+ }