Safetensors
qwen2
agentrl commited on
Commit
416fb80
·
verified ·
1 Parent(s): 639b123

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/intro_bar.png filter=lfs diff=lfs merge=lfs -text
37
+ assets/method.png filter=lfs diff=lfs merge=lfs -text
38
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Agent-RL
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md CHANGED
@@ -1,3 +1,164 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+
3
+ # ***ReSearch***: Learning to ***Re***ason with ***Search*** for LLMs via Reinforcement Learning
4
+
5
+ [![Arxiv](https://img.shields.io/badge/paper-A82F27?style=for-the-badge&logo=arxiv)](https://arxiv.org/abs/2503.19470)
6
+ <!-- [![Model](https://img.shields.io/badge/model-4169E1?style=for-the-badge&logo=huggingface)](https://arxiv.org/abs/2503.19470) -->
7
+
8
+ </div>
9
+
10
+ <p align="center">
11
+ <img src="./assets/intro_bar.png" width="90%" alt="Intro" />
12
+ <img src="./assets/method.png" width="90%" alt="Method" />
13
+ </p>
14
+
15
+ We propose ***ReSearch***, a novel framework that trains LLMs to ***Re***ason with ***Search*** via reinforcement learning without using any supervised data on reasoning steps. Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking, and search results subsequently influence further reasoning.
16
+
17
+ ## 📰 News
18
+ - **[2025-03-26]** 🎉 We release the paper, update the code and open-source the models.
19
+ - 📝 The **paper is released** on arXiv, more details and evaluation results can be found in our [paper](https://arxiv.org/abs/2503.19470).
20
+ - 🛠️ The **repository is updated** with the new implementation, especially the rollout with search during RL training. This version of implementation is based on the latest release of verl.
21
+ - **[2025-03-03]** ✅ We have released the preview version of ReSearch implementation.
22
+
23
+ ## 📦 Installation
24
+
25
+ We recommend using conda to manage the environment. First create a conda environment and activate it.
26
+ ```bash
27
+ conda create -n re-search python==3.10
28
+ conda activate re-search
29
+ ```
30
+ Then install dependencies, and our modified verl and flashrag packages under ```src/``` will be installed in the editable mode. Check out ```setup.py``` for details.
31
+ ```bash
32
+ pip3 install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu124
33
+ pip3 install flash-attn --no-build-isolation
34
+ git clone https://github.com/Agent-RL/ReSearch.git
35
+ cd ReSearch
36
+ pip3 install -e .
37
+ ```
38
+ As described in the [FlashRAG](https://github.com/RUC-NLPIR/FlashRAG?tab=readme-ov-file#wrench-installation), due to the incompatibility when installing faiss using pip, we need to use the following conda command to install faiss-gpu.
39
+ ```bash
40
+ conda install -c pytorch -c nvidia faiss-gpu=1.8.0
41
+ ```
42
+
43
+ ## 🚀 Quick Start
44
+
45
+ ### Retriever Serving
46
+
47
+ As described in our paper, during model training and evaluation, search operation will be conducted in the rollout and inference process. In practice, we host a retriever service via FlashRAG and FastAPI. Hence, the search operation is standardized to be an API call. This serving can be used to decouple the search operation from the reinforcement learning process, making the training and evaluation more clear and flexible.
48
+
49
+ Before starting the retriever serving, you need download the [pre-indexed wikipedia](https://github.com/RUC-NLPIR/FlashRAG?tab=readme-ov-file#index), [wikipedia corpus and corresponding retriever models](https://github.com/RUC-NLPIR/FlashRAG/blob/main/docs/original_docs/reproduce_experiment.md#preliminary). More details can be found in the documentation of FlashRAG.
50
+
51
+ For starting the retriever serving, you need to first fill the `scripts/serving/retriever_config.yaml` with the correct path to the retrieval model, index, and corpus, and available GPU ids. Then, you can run the following command to start the retriever serving:
52
+ ```bash
53
+ cd scripts/serving
54
+ python retriever_serving.py \
55
+ --config retriever_config.yaml \
56
+ --num_retriever {num_retriever} \
57
+ --port {port}
58
+ ```
59
+
60
+ The started retriever serving will be used in the training and evaluation process in the following part.
61
+
62
+ ### Data Preparation
63
+
64
+ *ReSearch* is trained on the training set of MuSiQue, and evaluated on the dev set of HotpotQA, 2WikiMultiHopQA, MuSiQue and Bamboogle. For downloading the datasets, please refer to the `data/download_dataset.sh` script.
65
+ ```bash
66
+ cd data
67
+ bash download_dataset.sh
68
+ ```
69
+
70
+ For preparing the training and validation data for following reinforcement learning, please run this script to parse the MuSiQue dataset to the parquet format.
71
+ ```bash
72
+ cd data
73
+ python prepare_musique.py
74
+ ```
75
+
76
+ ### Training
77
+
78
+ Our training framework is based on [verl](https://github.com/volcengine/verl), a powerful reinforcement learning framework for LLMs. We deeply customize the verl code to fit our needs, and the modified version of verl is under the `src/verl` directory. The example of training scripts are under `scripts/train`.
79
+
80
+ #### Single-node training
81
+ Here is an example of training Qwen2.5-7B-Instruct with 4 GPUs locally. Note that the training script below **is just an example** for single-node training, using small batch size for quick start, and do not assure the training performance.
82
+ ```bash
83
+ cd scripts/train
84
+ bash train.sh \
85
+ --train_batch_size 8 \
86
+ --ppo_mini_batch_size 8 \
87
+ --apply_chat True \
88
+ --prompt_template_name re_search_template_sys \
89
+ --actor_model_path {model/path/to/qwen2.5-7b-instruct} \
90
+ --search_url {your-hosted-retriever-url} \
91
+ --project_name {wandb-project-name} \
92
+ --experiment_name {wandb-experiment-name} \
93
+ --nnodes 1 \
94
+ --n_gpus_per_node 4 \
95
+ --save_freq 5 \
96
+ --test_freq 5 \
97
+ --total_epochs 2 \
98
+ --wandb_api_key {your-wandb-api-key} \
99
+ --save_path {path/to/save} \
100
+ --train_files {path/to/train/parquet/data} \
101
+ --test_files {path/to/test/parquet/data}
102
+ ```
103
+ - For training base (pre-trained) models, please use `--apply_chat False` and `--prompt_template_name re_search_template`
104
+ - For training instruction-tuned models, please use `--apply_chat True` and `--prompt_template_name re_search_template_sys`
105
+
106
+ #### Multi-node training
107
+
108
+ If you want to **fully reproduce** the results in our paper, please refer to the multi-node training script in `scripts/train/train_multi_node.sh`, as well as the implementation details in our paper.
109
+
110
+ ### Evaluation
111
+
112
+ We recommend using [SGLang](https://docs.sglang.ai/) to serve the trained model. You can download our open-sourced models or trained your own models to conduct the evaluation. Here is an example of launching the model serving:
113
+ ```bash
114
+ python3 -m sglang.launch_server \
115
+ --served-model-name {trained/model/name} \
116
+ --model-path {trained/model/path} \
117
+ --tp 2 \
118
+ --context-length 8192 \
119
+ --enable-metrics \
120
+ --dtype bfloat16 \
121
+ --host 0.0.0.0 \
122
+ --port 80 \
123
+ --trust-remote-code \
124
+ --disable-overlap \
125
+ --disable-radix-cache
126
+ ```
127
+
128
+ We use [FlashRAG](https://github.com/RUC-NLPIR/FlashRAG) as the standard evaluation environment. Here is an example of evaluating the performance of ReSearch-Qwen-7B-Instruct on Bamboogle test set.
129
+ ```bash
130
+ cd scripts/evaluation
131
+ python run_eval.py \
132
+ --config_path eval_config.yaml \
133
+ --method_name research \
134
+ --data_dir {root/path/to/evaluation/data} \
135
+ --dataset_name bamboogle \
136
+ --split test \
137
+ --save_dir {your-save-dir} \
138
+ --save_note research_qwen7b_ins
139
+ --sgl_remote_url {your-launched-sgl-url} \
140
+ --remote_retriever_url {your-hosted-retriever-url} \
141
+ --generator_model {your-local-model-path} \
142
+ --apply_chat True
143
+ ```
144
+
145
+ For base model, please use `--apply_chat False` and for instruction-tuned model, please use `--apply_chat True`, for loading correct prompt template when conducting evaluation for *ReSearch* model. For more details about the configuration, please refer to the `scripts/evaluation/eval_config.yaml` file.
146
+
147
+ ## 🤝 Acknowledge
148
+
149
+ This training implementation is based on [verl](https://github.com/volcengine/verl) and the evaluation is based on [FlashRAG](https://github.com/RUC-NLPIR/FlashRAG). The serving of retriever is based on [FastAPI](https://github.com/fastapi/fastapi). The model serving is based on [SGLang](https://docs.sglang.ai/). *ReSearch* models are trained based on [Qwen2.5](https://qwenlm.github.io/blog/qwen2.5/). We sincerely appreciate their contributions to the open-source community.
150
+
151
+ ## 📚 Citation
152
+
153
+ If you find this work useful, please cite it as follows:
154
+ ```bibtex
155
+ @misc{chen2025research
156
+ title={ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning},
157
+ author={Mingyang Chen and Tianpeng Li and Haoze Sun and Yijie Zhou and Chenzheng Zhu and Haofen Wang and Jeff Z. Pan and Wen Zhang and Huajun Chen and Fan Yang and Zenan Zhou and Weipeng Chen},
158
+ year={2025},
159
+ eprint={2503.19470},
160
+ archivePrefix={arXiv},
161
+ primaryClass={cs.AI},
162
+ url={https://arxiv.org/abs/2503.19470},
163
+ }
164
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
assets/intro_bar.png ADDED

Git LFS Details

  • SHA256: 3cc74487511da00039092efbb8623f64718689abf5d9fd3d23ab320aeb8d3bfa
  • Pointer size: 132 Bytes
  • Size of remote file: 1.32 MB
assets/method.png ADDED

Git LFS Details

  • SHA256: 6b3852ba485f4a6914bac4f8b2dff62268f6aa48d479b80b0714b55ae9fddf2a
  • Pointer size: 131 Bytes
  • Size of remote file: 205 kB
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2ForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "eos_token_id": 151643,
7
+ "hidden_act": "silu",
8
+ "hidden_size": 3584,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 18944,
11
+ "max_position_embeddings": 131072,
12
+ "max_window_layers": 28,
13
+ "model_type": "qwen2",
14
+ "num_attention_heads": 28,
15
+ "num_hidden_layers": 28,
16
+ "num_key_value_heads": 4,
17
+ "pad_token_id": 151643,
18
+ "rms_norm_eps": 1e-06,
19
+ "rope_scaling": null,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.46.0",
25
+ "use_cache": true,
26
+ "use_mrope": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": 151643,
4
+ "pad_token_id": 151643,
5
+ "transformers_version": "4.46.0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51992645f6977cceb0fc34a0b273f8be6f829900c96733f4f339a6f532c5a09a
3
+ size 4925352472
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fba04904571799c63d2b9756527d1114f189706c1b178d0523987c952e9decb2
3
+ size 4976737984
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b154998a345cce464281f5c90b80260ae5287d3ea08012337e3e32d44854833c
3
+ size 4921787432
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df71e797d531c423ddf2a8efdb2d0cfe8ef130d7ce8bb4dc83d06afeb7dbccd1
3
+ size 407393984
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00001-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00002-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00002-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00003-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00004-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00004-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00001-of-00004.safetensors"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff