File size: 1,839 Bytes
cbc4ff8 2ed6a83 cbc4ff8 2ed6a83 cbc4ff8 ceddb6b 2ed6a83 ceddb6b cbc4ff8 2ed6a83 cbc4ff8 b625cb9 cbc4ff8 b625cb9 cbc4ff8 2ed6a83 ceddb6b cbc4ff8 2ed6a83 b625cb9 cbc4ff8 b625cb9 2ed6a83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: peft
license: mit
base_model: facebook/m2m100_418M
tags:
- generated_from_trainer
metrics:
- bleu
- f1
- wer
model-index:
- name: m2m_trial1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# m2m_trial1
This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the None dataset.
It achieves the following results on the evaluation set:
- Bleu: 0.8239
- F1: 0.9229
- Wer: 0.0824
- Cer: 0.0262
- Meteor: 0.9148
- Loss: 6.1042
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Bleu | F1 | Wer | Cer | Meteor | Validation Loss |
|:-------------:|:-----:|:-----:|:------:|:------:|:------:|:------:|:------:|:---------------:|
| 6.1256 | 1.0 | 12500 | 0.7992 | 0.9121 | 0.0950 | 0.0308 | 0.9022 | 6.1147 |
| 6.1187 | 2.0 | 25000 | 0.8172 | 0.9198 | 0.0868 | 0.0281 | 0.9112 | 6.1067 |
| 6.0999 | 3.0 | 37500 | 0.8239 | 0.9229 | 0.0824 | 0.0262 | 0.9148 | 6.1042 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1 |