diff --git "a/README.md" "b/README.md"
new file mode 100644--- /dev/null
+++ "b/README.md"
@@ -0,0 +1,1470 @@
+---
+tags:
+- ColBERT
+- PyLate
+- sentence-transformers
+- sentence-similarity
+- feature-extraction
+- generated_from_trainer
+- dataset_size:533177
+- loss:Distillation
+base_model: jhu-clsp/ettin-encoder-17m
+datasets:
+- Speedsy/cleaned-ms-marco-bge-gemma-from-ligton
+pipeline_tag: sentence-similarity
+library_name: PyLate
+metrics:
+- MaxSim_accuracy@1
+- MaxSim_accuracy@3
+- MaxSim_accuracy@5
+- MaxSim_accuracy@10
+- MaxSim_precision@1
+- MaxSim_precision@3
+- MaxSim_precision@5
+- MaxSim_precision@10
+- MaxSim_recall@1
+- MaxSim_recall@3
+- MaxSim_recall@5
+- MaxSim_recall@10
+- MaxSim_ndcg@10
+- MaxSim_mrr@10
+- MaxSim_map@100
+model-index:
+- name: PyLate model based on jhu-clsp/ettin-encoder-17m
+ results:
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoClimateFEVER
+ type: NanoClimateFEVER
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.26
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.42
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.5
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.74
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.26
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.15999999999999998
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.11600000000000002
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.092
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.13499999999999998
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.215
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.2533333333333333
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.36666666666666664
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.29046566923016665
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.3753571428571428
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.2288474708316239
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoDBPedia
+ type: NanoDBPedia
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.72
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.86
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.92
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.94
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.72
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.62
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.5559999999999999
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.486
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.07317816591767387
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.16578829322639302
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.21602211788294917
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.33395660972359953
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.5879701952218912
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.7981904761904762
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.4653911951587876
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoFEVER
+ type: NanoFEVER
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.88
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.94
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.96
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.98
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.88
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.32666666666666666
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.20399999999999996
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.10799999999999997
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.8166666666666668
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.8933333333333333
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.9233333333333333
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.96
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.904750880683694
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.9111904761904762
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.8780844155844156
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoFiQA2018
+ type: NanoFiQA2018
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.44
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.62
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.66
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.74
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.44
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.2733333333333333
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.20799999999999996
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.132
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.2409126984126984
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.3758492063492064
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.4422857142857143
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.5564523809523809
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.4639924721325262
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.5364682539682539
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.38776210596346167
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoHotpotQA
+ type: NanoHotpotQA
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.88
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 1.0
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 1.0
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 1.0
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.88
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.5466666666666665
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.344
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.17999999999999997
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.44
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.82
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.86
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.9
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.8574760963060821
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.9333333333333332
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.799964380447139
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoMSMARCO
+ type: NanoMSMARCO
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.52
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.66
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.78
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.82
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.52
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.22
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.15600000000000003
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.08199999999999999
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.52
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.66
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.78
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.82
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.6644746347246161
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.6150555555555556
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.6240256785755237
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoNFCorpus
+ type: NanoNFCorpus
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.44
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.52
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.64
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.66
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.44
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.3466666666666666
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.32799999999999996
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.25800000000000006
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.04328552205779273
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.0766231938568144
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.11774321091803387
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.14122996307881844
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.3254678017637849
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.5031904761904762
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.14596595568471235
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoNQ
+ type: NanoNQ
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.5
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.78
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.8
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.84
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.5
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.26
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.16399999999999998
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.088
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.47
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.72
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.75
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.8
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.6545121111640885
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.6283333333333333
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.6016451583332388
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoQuoraRetrieval
+ type: NanoQuoraRetrieval
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.82
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.98
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 1.0
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 1.0
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.82
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.38666666666666655
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.24799999999999997
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.12599999999999997
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.7340000000000001
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.9286666666666668
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.9626666666666668
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.966
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.904268856532771
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.8973333333333333
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.8789129063746711
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoSCIDOCS
+ type: NanoSCIDOCS
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.44
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.64
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.68
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.8
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.44
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.3066666666666667
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.23999999999999996
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.16
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.09166666666666667
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.18966666666666665
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.24566666666666662
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.32666666666666666
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.3302289015435344
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.5572222222222223
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.2550652569095046
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoArguAna
+ type: NanoArguAna
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.18
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.56
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.62
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.76
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.18
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.18666666666666668
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.12400000000000003
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.07600000000000001
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.18
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.56
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.62
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.76
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.4645129865259301
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.370047619047619
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.3781205313205313
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoSciFact
+ type: NanoSciFact
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.62
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.8
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.86
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.88
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.62
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.27999999999999997
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.18799999999999997
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.1
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.595
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.77
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.845
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.88
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.7484873429234673
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.7096666666666667
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.7040186906589345
+ name: Maxsim Map@100
+ - task:
+ type: py-late-information-retrieval
+ name: Py Late Information Retrieval
+ dataset:
+ name: NanoTouche2020
+ type: NanoTouche2020
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.673469387755102
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.9795918367346939
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 1.0
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 1.0
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.673469387755102
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.6598639455782312
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.6285714285714286
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.5
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.044158696154151085
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.1348057247941035
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.2118327372127382
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.31512231200199337
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.5654862366863922
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.8136054421768706
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.41218683538450235
+ name: Maxsim Map@100
+ - task:
+ type: nano-beir
+ name: Nano BEIR
+ dataset:
+ name: NanoBEIR mean
+ type: NanoBEIR_mean
+ metrics:
+ - type: MaxSim_accuracy@1
+ value: 0.5671899529042386
+ name: Maxsim Accuracy@1
+ - type: MaxSim_accuracy@3
+ value: 0.7507378335949764
+ name: Maxsim Accuracy@3
+ - type: MaxSim_accuracy@5
+ value: 0.8015384615384614
+ name: Maxsim Accuracy@5
+ - type: MaxSim_accuracy@10
+ value: 0.8584615384615385
+ name: Maxsim Accuracy@10
+ - type: MaxSim_precision@1
+ value: 0.5671899529042386
+ name: Maxsim Precision@1
+ - type: MaxSim_precision@3
+ value: 0.3517844060701203
+ name: Maxsim Precision@3
+ - type: MaxSim_precision@5
+ value: 0.2695824175824175
+ name: Maxsim Precision@5
+ - type: MaxSim_precision@10
+ value: 0.18369230769230768
+ name: Maxsim Precision@10
+ - type: MaxSim_recall@1
+ value: 0.3372206473750499
+ name: Maxsim Recall@1
+ - type: MaxSim_recall@3
+ value: 0.5007486988379373
+ name: Maxsim Recall@3
+ - type: MaxSim_recall@5
+ value: 0.5559910600230336
+ name: Maxsim Recall@5
+ - type: MaxSim_recall@10
+ value: 0.6250841999300097
+ name: Maxsim Recall@10
+ - type: MaxSim_ndcg@10
+ value: 0.597084168110688
+ name: Maxsim Ndcg@10
+ - type: MaxSim_mrr@10
+ value: 0.6653072562358275
+ name: Maxsim Mrr@10
+ - type: MaxSim_map@100
+ value: 0.5199992754790036
+ name: Maxsim Map@100
+---
+
+# PyLate model based on jhu-clsp/ettin-encoder-17m
+
+This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m) on the [train](https://huggingface.co/datasets/Speedsy/cleaned-ms-marco-bge-gemma-from-ligton) dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
+
+## Model Details
+
+### Model Description
+- **Model Type:** PyLate model
+- **Base model:** [jhu-clsp/ettin-encoder-17m](https://huggingface.co/jhu-clsp/ettin-encoder-17m)
+- **Document Length:** 300 tokens
+- **Query Length:** 32 tokens
+- **Output Dimensionality:** 128 tokens
+- **Similarity Function:** MaxSim
+- **Training Dataset:**
+ - [train](https://huggingface.co/datasets/Speedsy/cleaned-ms-marco-bge-gemma-from-ligton)
+
+
+
+### Model Sources
+
+- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
+- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
+- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
+
+### Full Model Architecture
+
+```
+ColBERT(
+ (0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: ModernBertModel
+ (1): Dense({'in_features': 256, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
+)
+```
+
+## Usage
+First install the PyLate library:
+
+```bash
+pip install -U pylate
+```
+
+### Retrieval
+
+PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
+
+#### Indexing documents
+
+First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
+
+```python
+from pylate import indexes, models, retrieve
+
+# Step 1: Load the ColBERT model
+model = models.ColBERT(
+ model_name_or_path=pylate_model_id,
+)
+
+# Step 2: Initialize the Voyager index
+index = indexes.Voyager(
+ index_folder="pylate-index",
+ index_name="index",
+ override=True, # This overwrites the existing index if any
+)
+
+# Step 3: Encode the documents
+documents_ids = ["1", "2", "3"]
+documents = ["document 1 text", "document 2 text", "document 3 text"]
+
+documents_embeddings = model.encode(
+ documents,
+ batch_size=32,
+ is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
+ show_progress_bar=True,
+)
+
+# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
+index.add_documents(
+ documents_ids=documents_ids,
+ documents_embeddings=documents_embeddings,
+)
+```
+
+Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
+
+```python
+# To load an index, simply instantiate it with the correct folder/name and without overriding it
+index = indexes.Voyager(
+ index_folder="pylate-index",
+ index_name="index",
+)
+```
+
+#### Retrieving top-k documents for queries
+
+Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
+To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
+
+```python
+# Step 1: Initialize the ColBERT retriever
+retriever = retrieve.ColBERT(index=index)
+
+# Step 2: Encode the queries
+queries_embeddings = model.encode(
+ ["query for document 3", "query for document 1"],
+ batch_size=32,
+ is_query=True, # # Ensure that it is set to False to indicate that these are queries
+ show_progress_bar=True,
+)
+
+# Step 3: Retrieve top-k documents
+scores = retriever.retrieve(
+ queries_embeddings=queries_embeddings,
+ k=10, # Retrieve the top 10 matches for each query
+)
+```
+
+### Reranking
+If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
+
+```python
+from pylate import rank, models
+
+queries = [
+ "query A",
+ "query B",
+]
+
+documents = [
+ ["document A", "document B"],
+ ["document 1", "document C", "document B"],
+]
+
+documents_ids = [
+ [1, 2],
+ [1, 3, 2],
+]
+
+model = models.ColBERT(
+ model_name_or_path=pylate_model_id,
+)
+
+queries_embeddings = model.encode(
+ queries,
+ is_query=True,
+)
+
+documents_embeddings = model.encode(
+ documents,
+ is_query=False,
+)
+
+reranked_documents = rank.rerank(
+ documents_ids=documents_ids,
+ queries_embeddings=queries_embeddings,
+ documents_embeddings=documents_embeddings,
+)
+```
+
+
+
+
+
+
+
+## Evaluation
+
+### Metrics
+
+#### Py Late Information Retrieval
+* Dataset: `['NanoClimateFEVER', 'NanoDBPedia', 'NanoFEVER', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNFCorpus', 'NanoNQ', 'NanoQuoraRetrieval', 'NanoSCIDOCS', 'NanoArguAna', 'NanoSciFact', 'NanoTouche2020']`
+* Evaluated with pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
+
+| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
+|:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
+| MaxSim_accuracy@1 | 0.26 | 0.72 | 0.88 | 0.44 | 0.88 | 0.52 | 0.44 | 0.5 | 0.82 | 0.44 | 0.18 | 0.62 | 0.6735 |
+| MaxSim_accuracy@3 | 0.42 | 0.86 | 0.94 | 0.62 | 1.0 | 0.66 | 0.52 | 0.78 | 0.98 | 0.64 | 0.56 | 0.8 | 0.9796 |
+| MaxSim_accuracy@5 | 0.5 | 0.92 | 0.96 | 0.66 | 1.0 | 0.78 | 0.64 | 0.8 | 1.0 | 0.68 | 0.62 | 0.86 | 1.0 |
+| MaxSim_accuracy@10 | 0.74 | 0.94 | 0.98 | 0.74 | 1.0 | 0.82 | 0.66 | 0.84 | 1.0 | 0.8 | 0.76 | 0.88 | 1.0 |
+| MaxSim_precision@1 | 0.26 | 0.72 | 0.88 | 0.44 | 0.88 | 0.52 | 0.44 | 0.5 | 0.82 | 0.44 | 0.18 | 0.62 | 0.6735 |
+| MaxSim_precision@3 | 0.16 | 0.62 | 0.3267 | 0.2733 | 0.5467 | 0.22 | 0.3467 | 0.26 | 0.3867 | 0.3067 | 0.1867 | 0.28 | 0.6599 |
+| MaxSim_precision@5 | 0.116 | 0.556 | 0.204 | 0.208 | 0.344 | 0.156 | 0.328 | 0.164 | 0.248 | 0.24 | 0.124 | 0.188 | 0.6286 |
+| MaxSim_precision@10 | 0.092 | 0.486 | 0.108 | 0.132 | 0.18 | 0.082 | 0.258 | 0.088 | 0.126 | 0.16 | 0.076 | 0.1 | 0.5 |
+| MaxSim_recall@1 | 0.135 | 0.0732 | 0.8167 | 0.2409 | 0.44 | 0.52 | 0.0433 | 0.47 | 0.734 | 0.0917 | 0.18 | 0.595 | 0.0442 |
+| MaxSim_recall@3 | 0.215 | 0.1658 | 0.8933 | 0.3758 | 0.82 | 0.66 | 0.0766 | 0.72 | 0.9287 | 0.1897 | 0.56 | 0.77 | 0.1348 |
+| MaxSim_recall@5 | 0.2533 | 0.216 | 0.9233 | 0.4423 | 0.86 | 0.78 | 0.1177 | 0.75 | 0.9627 | 0.2457 | 0.62 | 0.845 | 0.2118 |
+| MaxSim_recall@10 | 0.3667 | 0.334 | 0.96 | 0.5565 | 0.9 | 0.82 | 0.1412 | 0.8 | 0.966 | 0.3267 | 0.76 | 0.88 | 0.3151 |
+| **MaxSim_ndcg@10** | **0.2905** | **0.588** | **0.9048** | **0.464** | **0.8575** | **0.6645** | **0.3255** | **0.6545** | **0.9043** | **0.3302** | **0.4645** | **0.7485** | **0.5655** |
+| MaxSim_mrr@10 | 0.3754 | 0.7982 | 0.9112 | 0.5365 | 0.9333 | 0.6151 | 0.5032 | 0.6283 | 0.8973 | 0.5572 | 0.37 | 0.7097 | 0.8136 |
+| MaxSim_map@100 | 0.2288 | 0.4654 | 0.8781 | 0.3878 | 0.8 | 0.624 | 0.146 | 0.6016 | 0.8789 | 0.2551 | 0.3781 | 0.704 | 0.4122 |
+
+#### Nano BEIR
+* Dataset: `NanoBEIR_mean`
+* Evaluated with pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator
+
+| Metric | Value |
+|:--------------------|:-----------|
+| MaxSim_accuracy@1 | 0.5672 |
+| MaxSim_accuracy@3 | 0.7507 |
+| MaxSim_accuracy@5 | 0.8015 |
+| MaxSim_accuracy@10 | 0.8585 |
+| MaxSim_precision@1 | 0.5672 |
+| MaxSim_precision@3 | 0.3518 |
+| MaxSim_precision@5 | 0.2696 |
+| MaxSim_precision@10 | 0.1837 |
+| MaxSim_recall@1 | 0.3372 |
+| MaxSim_recall@3 | 0.5007 |
+| MaxSim_recall@5 | 0.556 |
+| MaxSim_recall@10 | 0.6251 |
+| **MaxSim_ndcg@10** | **0.5971** |
+| MaxSim_mrr@10 | 0.6653 |
+| MaxSim_map@100 | 0.52 |
+
+
+
+
+
+## Training Details
+
+### Training Dataset
+
+#### train
+
+* Dataset: [train](https://huggingface.co/datasets/Speedsy/cleaned-ms-marco-bge-gemma-from-ligton) at [63f51a3](https://huggingface.co/datasets/Speedsy/cleaned-ms-marco-bge-gemma-from-ligton/tree/63f51a32e72d981b44be6cace953edbb7dd2c4b0)
+* Size: 533,177 training samples
+* Columns: query_id
, document_ids
, and scores
+* Approximate statistics based on the first 1000 samples:
+ | | query_id | document_ids | scores |
+ |:--------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------|:------------------------------------|
+ | type | int | list | list |
+ | details |
237784
| [6366584, 4034101, 2325374, 6914618, 6042146, ...]
| [0.9999999991784339, 0.42233632827946693, 0.5956354295491569, 0.12644415907455164, 0.6636713730105909, ...]
|
+ | 904294
| [448408, 8743975, 49600, 7339401, 2714261, ...]
| [0.9999999991841937, 0.877629062381539, 0.8330146583389045, 0.3116634796692611, 0.4633524534142185, ...]
|
+ | 412214
| [1006306, 4454048, 1949661, 4895656, 675880, ...]
| [0.9999999994734676, 0.38790621123137803, 0.3747429039573546, 0.2990538871317199, 0.38420403106055895, ...]
|
+* Loss: pylate.losses.distillation.Distillation
+
+### Training Hyperparameters
+#### Non-Default Hyperparameters
+
+- `eval_strategy`: steps
+- `per_device_train_batch_size`: 16
+- `learning_rate`: 3e-05
+- `num_train_epochs`: 1
+- `bf16`: True
+
+#### All Hyperparameters
+