--- language: - ru tags: - PyTorch - Transformers --- # BERT large model (uncased) for Sentence Embeddings in Russian language. The model is described [in this article](https://habr.com/ru/company/sberdevices/blog/527576/) For better quality, use mean token embeddings. ## Usage (HuggingFace Models Repository) You can use the model directly from the model repository to compute sentence embeddings: ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask #Sentences we want sentence embeddings for sentences = ['Привет! Как твои дела?', 'А правда, что 42 твое любимое число?'] #Load AutoModel from huggingface model repository tokenizer = AutoTokenizer.from_pretrained("ai-forever/sbert_large_nlu_ru") model = AutoModel.from_pretrained("ai-forever/sbert_large_nlu_ru") #Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=24, return_tensors='pt') #Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) #Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ``` # Authors + [SberDevices](https://sberdevices.ru/) Team. + Aleksandr Abramov: [HF profile](https://huggingface.co/Andrilko), [Github](https://github.com/Ab1992ao), [Kaggle Competitions Master](https://www.kaggle.com/andrilko); + Denis Antykhov: [Github](https://github.com/gaphex); + Ibragim Badertdinov: [Github](https://github.com/ibragim-bad)