himani commited on
Commit
4e5c7e4
·
1 Parent(s): bed672f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -1
README.md CHANGED
@@ -1,3 +1,98 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - sentence-summarization
4
+ - multilingual
5
+ - nlp
6
+ - indicnlp
7
+ datasets:
8
+ - ai4bharat/IndicSentenceSummarization
9
+ language:
10
+ - as
11
+ - bn
12
+ - gu
13
+ - hi
14
+ - kn
15
+ - ml
16
+ - mr
17
+ - or
18
+ - pa
19
+ - ta
20
+ - te
21
+ license:
22
+ - mit
23
+
24
+
25
  ---
26
+
27
+ # MultiIndicSentenceSummarizationSS
28
+
29
+ This repository contains the [IndicBARTSS](https://huggingface.co/ai4bharat/IndicBARTSS) checkpoint finetuned on the 11 languages of [IndicSentenceSummarization](https://huggingface.co/datasets/ai4bharat/IndicSentenceSummarization) dataset. For finetuning details,
30
+ see the [paper](https://arxiv.org/abs/2203.05437).
31
+ <ul>
32
+ <li >Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5. </li>
33
+ <li >The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for decoding. </li>
34
+ <li> Trained on large Indic language corpora (5.53 million sentences). </li>
35
+ <li> Unlike <a href="https://huggingface.co/ai4bharat/MultiIndicSentenceSummarization">MultiIndicSentenceSummarization</a> each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari. </li>
36
+ </ul>
37
+
38
+
39
+
40
+ ## Using this model in `transformers`
41
+
42
+ ```
43
+ from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
44
+ from transformers import AlbertTokenizer, AutoTokenizer
45
+ tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicSentenceSummarizationSS", do_lower_case=False, use_fast=False, keep_accents=True)
46
+ # Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicSentenceSummarizationSS", do_lower_case=False, use_fast=False, keep_accents=True)
47
+ model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicSentenceSummarizationSS")
48
+ # Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicSentenceSummarizationSS")
49
+
50
+ # Some initial mapping
51
+ bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
52
+ eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
53
+ pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")
54
+
55
+ # To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
56
+ # First tokenize the input. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
57
+ inp = tokenizer("जम्मू एवं कश्मीर के अनंतनाग जिले में शनिवार को सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादियों को मार गिराया गया। </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids
58
+
59
+ # For generation. Pardon the messiness. Note the decoder_start_token_id.
60
+
61
+ model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3, num_beams=5, length_penalty=0.8, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>"))
62
+
63
+ # Decode to get output strings
64
+ decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
65
+ print(decoded_output) # अनंतनाग में सुरक्षाबलों के साथ मुठभेड़ में दो आतंकवादी ढेर
66
+ ```
67
+
68
+ ## Benchmarks
69
+
70
+ Scores on the `IndicSentenceSummarization` test sets are as follows:
71
+
72
+ Language | Rouge-1 / Rouge-2 / Rouge-L
73
+ ---------|----------------------------
74
+ as | 63.56 / 49.90 / 62.57
75
+ bn | 52.52 / 36.15 / 50.60
76
+ gu | 47.69 / 29.77 / 45.61
77
+ hi | 50.43 / 28.13 / 45.15
78
+ kn | 77.06 / 69.36 / 76.33
79
+ ml | 65.00 / 51.99 / 63.76
80
+ mr | 47.05 / 25.97 / 45.52
81
+ or | 50.96 / 30.32 / 49.23
82
+ pa | 54.95 / 36.26 / 51.26
83
+ ta | 58.52 / 38.36 / 56.49
84
+ te | 53.75 / 35.17 / 52.66
85
+
86
+
87
+
88
+ ## Citation
89
+
90
+ If you use this model, please cite the following paper:
91
+ ```
92
+ @inproceedings{Kumar2022IndicNLGSM,
93
+ title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
94
+ author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
95
+ year={2022},
96
+ url = "https://arxiv.org/abs/2203.05437"
97
+ }
98
+ ```