--- library_name: transformers license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: trash_classifier2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.0 --- # trash_classifier2 This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0806 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.477 | 1.0 | 102 | 2.0441 | 0.0 | | 1.3737 | 2.0 | 204 | 2.0723 | 0.0 | | 1.5232 | 3.0 | 306 | 2.1164 | 0.0 | | 1.1161 | 4.0 | 408 | 2.0944 | 0.0 | | 1.1238 | 5.0 | 510 | 2.0806 | 0.0 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4