Update README.md
Browse files
README.md
CHANGED
|
@@ -84,20 +84,6 @@ text_encoder = AutoModelForCausalLM.from_pretrained(
|
|
| 84 |
)
|
| 85 |
text_encoder=text_encoder.to(device)
|
| 86 |
|
| 87 |
-
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
| 88 |
-
"aidealab/commonvideo",
|
| 89 |
-
torch_dtype=torch_dtype
|
| 90 |
-
)
|
| 91 |
-
transformer=transformer.to(device)
|
| 92 |
-
|
| 93 |
-
vae = AutoencoderKLCogVideoX.from_pretrained(
|
| 94 |
-
"THUDM/CogVideoX-2b",
|
| 95 |
-
subfolder="vae"
|
| 96 |
-
)
|
| 97 |
-
vae=vae.to(dtype=torch_dtype, device=device)
|
| 98 |
-
vae.enable_slicing()
|
| 99 |
-
vae.enable_tiling()
|
| 100 |
-
|
| 101 |
text_inputs = tokenizer(
|
| 102 |
prompt,
|
| 103 |
padding="max_length",
|
|
@@ -122,6 +108,23 @@ null_text_input_ids = null_text_inputs.input_ids
|
|
| 122 |
null_prompt_embeds = text_encoder(null_text_input_ids.to(device), output_hidden_states=True, attention_mask=null_text_inputs.attention_mask.to(device)).hidden_states[-1]
|
| 123 |
null_prompt_embeds = null_prompt_embeds.to(dtype=torch_dtype, device=device)
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
# euler discreate sampler with cfg
|
| 126 |
z0 = torch.randn(shape, device=device)
|
| 127 |
latents = z0.detach().clone().to(torch_dtype)
|
|
@@ -137,7 +140,9 @@ with torch.no_grad():
|
|
| 137 |
pred = null_conditional.sample+cfg*(positive_conditional.sample-null_conditional.sample)
|
| 138 |
latents = latents.detach().clone() + dt * pred.detach().clone()
|
| 139 |
|
| 140 |
-
# Free
|
|
|
|
|
|
|
| 141 |
latents = latents / vae.config.scaling_factor
|
| 142 |
latents = latents.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
|
| 143 |
x=vae.decode(latents).sample
|
|
|
|
| 84 |
)
|
| 85 |
text_encoder=text_encoder.to(device)
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
text_inputs = tokenizer(
|
| 88 |
prompt,
|
| 89 |
padding="max_length",
|
|
|
|
| 108 |
null_prompt_embeds = text_encoder(null_text_input_ids.to(device), output_hidden_states=True, attention_mask=null_text_inputs.attention_mask.to(device)).hidden_states[-1]
|
| 109 |
null_prompt_embeds = null_prompt_embeds.to(dtype=torch_dtype, device=device)
|
| 110 |
|
| 111 |
+
# Free VRAM
|
| 112 |
+
del text_encoder
|
| 113 |
+
|
| 114 |
+
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
| 115 |
+
"aidealab/commonvideo",
|
| 116 |
+
torch_dtype=torch_dtype
|
| 117 |
+
)
|
| 118 |
+
transformer=transformer.to(device)
|
| 119 |
+
|
| 120 |
+
vae = AutoencoderKLCogVideoX.from_pretrained(
|
| 121 |
+
"THUDM/CogVideoX-2b",
|
| 122 |
+
subfolder="vae"
|
| 123 |
+
)
|
| 124 |
+
vae=vae.to(dtype=torch_dtype, device=device)
|
| 125 |
+
vae.enable_slicing()
|
| 126 |
+
vae.enable_tiling()
|
| 127 |
+
|
| 128 |
# euler discreate sampler with cfg
|
| 129 |
z0 = torch.randn(shape, device=device)
|
| 130 |
latents = z0.detach().clone().to(torch_dtype)
|
|
|
|
| 140 |
pred = null_conditional.sample+cfg*(positive_conditional.sample-null_conditional.sample)
|
| 141 |
latents = latents.detach().clone() + dt * pred.detach().clone()
|
| 142 |
|
| 143 |
+
# Free VRAM
|
| 144 |
+
del transformer
|
| 145 |
+
|
| 146 |
latents = latents / vae.config.scaling_factor
|
| 147 |
latents = latents.permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
|
| 148 |
x=vae.decode(latents).sample
|