Model save
Browse files- README.md +79 -0
- intent_report_test.txt +75 -0
- model.safetensors +1 -1
- model_predict_test.csv +0 -0
- slot_report_test.txt +59 -0
README.md
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: mit
|
| 4 |
+
base_model: FacebookAI/xlm-roberta-base
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
model-index:
|
| 8 |
+
- name: xlm-roberta-base_massive_crf_v1
|
| 9 |
+
results: []
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 13 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 14 |
+
|
| 15 |
+
# xlm-roberta-base_massive_crf_v1
|
| 16 |
+
|
| 17 |
+
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset.
|
| 18 |
+
It achieves the following results on the evaluation set:
|
| 19 |
+
- Loss: 4.4117
|
| 20 |
+
- Slot P: 0.6934
|
| 21 |
+
- Slot R: 0.7706
|
| 22 |
+
- Slot F1: 0.7300
|
| 23 |
+
- Slot Exact Match: 0.6995
|
| 24 |
+
- Intent Acc: 0.8495
|
| 25 |
+
|
| 26 |
+
## Model description
|
| 27 |
+
|
| 28 |
+
More information needed
|
| 29 |
+
|
| 30 |
+
## Intended uses & limitations
|
| 31 |
+
|
| 32 |
+
More information needed
|
| 33 |
+
|
| 34 |
+
## Training and evaluation data
|
| 35 |
+
|
| 36 |
+
More information needed
|
| 37 |
+
|
| 38 |
+
## Training procedure
|
| 39 |
+
|
| 40 |
+
### Training hyperparameters
|
| 41 |
+
|
| 42 |
+
The following hyperparameters were used during training:
|
| 43 |
+
- learning_rate: 5e-05
|
| 44 |
+
- train_batch_size: 128
|
| 45 |
+
- eval_batch_size: 128
|
| 46 |
+
- seed: 42
|
| 47 |
+
- gradient_accumulation_steps: 2
|
| 48 |
+
- total_train_batch_size: 256
|
| 49 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 50 |
+
- lr_scheduler_type: cosine
|
| 51 |
+
- lr_scheduler_warmup_ratio: 0.06
|
| 52 |
+
- num_epochs: 30
|
| 53 |
+
- mixed_precision_training: Native AMP
|
| 54 |
+
|
| 55 |
+
### Training results
|
| 56 |
+
|
| 57 |
+
| Training Loss | Epoch | Step | Validation Loss | Slot P | Slot R | Slot F1 | Slot Exact Match | Intent Acc |
|
| 58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:----------------:|:----------:|
|
| 59 |
+
| No log | 1.0 | 45 | 22.8757 | 0.0 | 0.0 | 0.0 | 0.3187 | 0.0300 |
|
| 60 |
+
| 95.1993 | 2.0 | 90 | 15.1787 | 0.3194 | 0.2164 | 0.2580 | 0.3015 | 0.1117 |
|
| 61 |
+
| 36.1644 | 3.0 | 135 | 10.7793 | 0.4180 | 0.4502 | 0.4335 | 0.4506 | 0.1864 |
|
| 62 |
+
| 24.5568 | 4.0 | 180 | 7.5359 | 0.5813 | 0.6333 | 0.6062 | 0.5706 | 0.3586 |
|
| 63 |
+
| 16.5092 | 5.0 | 225 | 5.7306 | 0.6266 | 0.7020 | 0.6621 | 0.6203 | 0.5957 |
|
| 64 |
+
| 11.609 | 6.0 | 270 | 4.9020 | 0.6610 | 0.7363 | 0.6966 | 0.6626 | 0.7280 |
|
| 65 |
+
| 8.4757 | 7.0 | 315 | 4.4249 | 0.6701 | 0.7448 | 0.7055 | 0.6744 | 0.7762 |
|
| 66 |
+
| 6.8454 | 8.0 | 360 | 4.3691 | 0.6841 | 0.7532 | 0.7170 | 0.6960 | 0.7973 |
|
| 67 |
+
| 5.6898 | 9.0 | 405 | 4.4460 | 0.6747 | 0.7647 | 0.7169 | 0.6886 | 0.8141 |
|
| 68 |
+
| 4.6831 | 10.0 | 450 | 4.2133 | 0.7067 | 0.7552 | 0.7302 | 0.7073 | 0.8342 |
|
| 69 |
+
| 4.6831 | 11.0 | 495 | 4.4300 | 0.6954 | 0.7542 | 0.7236 | 0.6995 | 0.8347 |
|
| 70 |
+
| 3.9992 | 12.0 | 540 | 4.3942 | 0.6977 | 0.7637 | 0.7292 | 0.7024 | 0.8416 |
|
| 71 |
+
| 3.5154 | 13.0 | 585 | 4.4117 | 0.6934 | 0.7706 | 0.7300 | 0.6995 | 0.8495 |
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
### Framework versions
|
| 75 |
+
|
| 76 |
+
- Transformers 4.55.0
|
| 77 |
+
- Pytorch 2.7.0+cu126
|
| 78 |
+
- Datasets 3.6.0
|
| 79 |
+
- Tokenizers 0.21.4
|
intent_report_test.txt
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
precision recall f1-score support
|
| 2 |
+
|
| 3 |
+
0 0.86 0.94 0.90 88
|
| 4 |
+
1 0.76 0.94 0.84 36
|
| 5 |
+
2 0.92 0.97 0.94 35
|
| 6 |
+
3 0.81 0.83 0.82 35
|
| 7 |
+
4 0.92 0.88 0.90 26
|
| 8 |
+
5 0.00 0.00 0.00 1
|
| 9 |
+
6 0.92 0.79 0.85 43
|
| 10 |
+
7 0.00 0.00 0.00 4
|
| 11 |
+
8 1.00 0.83 0.91 18
|
| 12 |
+
9 0.87 0.85 0.86 72
|
| 13 |
+
10 0.95 1.00 0.97 39
|
| 14 |
+
11 0.68 1.00 0.81 15
|
| 15 |
+
12 0.57 0.54 0.56 169
|
| 16 |
+
13 0.93 0.96 0.94 156
|
| 17 |
+
14 0.56 0.69 0.62 13
|
| 18 |
+
15 0.67 0.67 0.67 12
|
| 19 |
+
16 0.89 0.77 0.83 22
|
| 20 |
+
17 0.75 0.81 0.78 26
|
| 21 |
+
18 0.92 0.81 0.86 27
|
| 22 |
+
19 0.73 0.87 0.79 31
|
| 23 |
+
20 0.89 0.80 0.85 41
|
| 24 |
+
21 0.83 0.87 0.85 39
|
| 25 |
+
22 0.89 0.86 0.88 124
|
| 26 |
+
23 0.91 0.85 0.88 34
|
| 27 |
+
24 1.00 0.40 0.57 10
|
| 28 |
+
25 0.95 0.95 0.95 19
|
| 29 |
+
26 0.87 0.84 0.86 57
|
| 30 |
+
27 0.79 0.76 0.78 25
|
| 31 |
+
28 0.00 0.00 0.00 6
|
| 32 |
+
29 0.00 0.00 0.00 6
|
| 33 |
+
30 0.90 0.99 0.94 67
|
| 34 |
+
31 0.72 0.62 0.67 21
|
| 35 |
+
32 0.74 0.83 0.79 126
|
| 36 |
+
33 0.95 0.92 0.93 114
|
| 37 |
+
34 0.74 0.88 0.81 26
|
| 38 |
+
35 0.88 0.64 0.74 11
|
| 39 |
+
36 0.75 0.81 0.78 72
|
| 40 |
+
37 0.00 0.00 0.00 0
|
| 41 |
+
38 1.00 0.20 0.33 15
|
| 42 |
+
39 0.91 0.80 0.85 25
|
| 43 |
+
40 0.93 0.93 0.93 43
|
| 44 |
+
41 0.00 0.00 0.00 3
|
| 45 |
+
42 0.87 0.78 0.82 51
|
| 46 |
+
43 0.65 0.36 0.46 36
|
| 47 |
+
44 0.96 0.92 0.94 119
|
| 48 |
+
45 0.81 0.91 0.86 176
|
| 49 |
+
46 0.74 0.91 0.82 32
|
| 50 |
+
47 0.97 0.88 0.92 81
|
| 51 |
+
48 0.88 0.93 0.90 41
|
| 52 |
+
49 0.74 0.83 0.78 141
|
| 53 |
+
50 0.88 0.90 0.89 209
|
| 54 |
+
51 0.92 0.94 0.93 35
|
| 55 |
+
52 0.95 0.90 0.93 21
|
| 56 |
+
53 0.98 0.90 0.94 52
|
| 57 |
+
54 0.92 0.96 0.94 23
|
| 58 |
+
55 0.76 0.80 0.78 20
|
| 59 |
+
56 0.94 0.86 0.90 36
|
| 60 |
+
57 0.62 0.83 0.71 35
|
| 61 |
+
58 0.92 0.70 0.79 63
|
| 62 |
+
59 0.85 0.80 0.83 51
|
| 63 |
+
|
| 64 |
+
accuracy 0.84 2974
|
| 65 |
+
macro avg 0.76 0.74 0.74 2974
|
| 66 |
+
weighted avg 0.84 0.84 0.83 2974
|
| 67 |
+
|
| 68 |
+
Confusion matrix:
|
| 69 |
+
[[83 0 0 ... 0 0 0]
|
| 70 |
+
[ 0 34 0 ... 0 0 0]
|
| 71 |
+
[ 0 0 34 ... 0 0 0]
|
| 72 |
+
...
|
| 73 |
+
[ 0 0 0 ... 29 0 0]
|
| 74 |
+
[ 0 0 0 ... 0 44 0]
|
| 75 |
+
[ 0 0 0 ... 0 0 41]]
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1112775472
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:402d2de6d7d404ac8d90f55b33f0637121a62e29e6b21fee847b4b608623def1
|
| 3 |
size 1112775472
|
model_predict_test.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
slot_report_test.txt
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
precision recall f1-score support
|
| 2 |
+
|
| 3 |
+
alarm_type 0.00 0.00 0.00 2
|
| 4 |
+
app_name 0.08 0.20 0.11 5
|
| 5 |
+
artist_name 0.69 0.85 0.76 61
|
| 6 |
+
audiobook_author 0.00 0.00 0.00 5
|
| 7 |
+
audiobook_name 0.71 0.74 0.72 23
|
| 8 |
+
business_name 0.75 0.77 0.76 92
|
| 9 |
+
business_type 0.50 0.58 0.54 31
|
| 10 |
+
change_amount 0.38 0.33 0.35 9
|
| 11 |
+
coffee_type 0.33 0.25 0.29 4
|
| 12 |
+
color_type 0.60 0.69 0.64 26
|
| 13 |
+
cooking_type 0.00 0.00 0.00 8
|
| 14 |
+
currency_name 0.81 0.96 0.88 50
|
| 15 |
+
date 0.81 0.89 0.85 415
|
| 16 |
+
definition_word 0.77 0.80 0.79 51
|
| 17 |
+
device_type 0.80 0.70 0.75 57
|
| 18 |
+
drink_type 0.00 0.00 0.00 1
|
| 19 |
+
email_address 0.89 0.89 0.89 9
|
| 20 |
+
email_folder 0.57 0.80 0.67 5
|
| 21 |
+
event_name 0.67 0.71 0.69 260
|
| 22 |
+
food_type 0.55 0.74 0.63 72
|
| 23 |
+
game_name 0.86 0.92 0.89 26
|
| 24 |
+
general_frequency 0.68 0.75 0.71 20
|
| 25 |
+
house_place 0.83 0.90 0.86 58
|
| 26 |
+
ingredient 0.00 0.00 0.00 6
|
| 27 |
+
joke_type 0.45 0.45 0.45 11
|
| 28 |
+
list_name 0.73 0.67 0.70 61
|
| 29 |
+
meal_type 0.61 0.94 0.74 18
|
| 30 |
+
media_type 0.83 0.80 0.82 128
|
| 31 |
+
movie_name 0.00 0.00 0.00 2
|
| 32 |
+
movie_type 0.00 0.00 0.00 3
|
| 33 |
+
music_album 0.00 0.00 0.00 1
|
| 34 |
+
music_descriptor 0.00 0.00 0.00 7
|
| 35 |
+
music_genre 0.69 0.84 0.76 50
|
| 36 |
+
news_topic 0.52 0.58 0.55 52
|
| 37 |
+
order_type 0.61 0.85 0.71 20
|
| 38 |
+
person 0.75 0.83 0.79 216
|
| 39 |
+
personal_info 0.71 0.71 0.71 14
|
| 40 |
+
place_name 0.78 0.79 0.78 281
|
| 41 |
+
player_setting 0.58 0.45 0.51 40
|
| 42 |
+
playlist_name 0.00 0.00 0.00 15
|
| 43 |
+
podcast_descriptor 0.43 0.42 0.43 24
|
| 44 |
+
podcast_name 0.75 0.71 0.73 17
|
| 45 |
+
radio_name 0.49 0.55 0.51 33
|
| 46 |
+
relation 0.72 0.75 0.73 59
|
| 47 |
+
song_name 0.47 0.64 0.54 39
|
| 48 |
+
time 0.70 0.70 0.70 191
|
| 49 |
+
time_zone 0.58 0.54 0.56 13
|
| 50 |
+
timeofday 0.70 0.70 0.70 60
|
| 51 |
+
transport_agency 0.88 0.78 0.82 9
|
| 52 |
+
transport_descriptor 0.00 0.00 0.00 2
|
| 53 |
+
transport_name 0.00 0.00 0.00 4
|
| 54 |
+
transport_type 0.76 0.83 0.79 65
|
| 55 |
+
weather_descriptor 0.61 0.68 0.64 82
|
| 56 |
+
|
| 57 |
+
micro avg 0.71 0.75 0.73 2813
|
| 58 |
+
macro avg 0.50 0.54 0.52 2813
|
| 59 |
+
weighted avg 0.70 0.75 0.72 2813
|