Model save
Browse files- README.md +85 -0
- intent_report_test.txt +75 -0
- model.safetensors +1 -1
- model_predict_test.csv +0 -0
- slot_report_test.txt +60 -0
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: FacebookAI/xlm-roberta-large
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: xlm-roberta-large_massive_crf_v1
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# xlm-roberta-large_massive_crf_v1
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 5.3967
|
20 |
+
- Slot P: 0.7375
|
21 |
+
- Slot R: 0.7801
|
22 |
+
- Slot F1: 0.7582
|
23 |
+
- Slot Exact Match: 0.7260
|
24 |
+
- Intent Acc: 0.8687
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 128
|
45 |
+
- eval_batch_size: 128
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 2
|
48 |
+
- total_train_batch_size: 256
|
49 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
+
- lr_scheduler_type: cosine
|
51 |
+
- lr_scheduler_warmup_ratio: 0.06
|
52 |
+
- num_epochs: 30
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Slot P | Slot R | Slot F1 | Slot Exact Match | Intent Acc |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:----------------:|:----------:|
|
59 |
+
| No log | 1.0 | 45 | 19.9807 | 0.0 | 0.0 | 0.0 | 0.3187 | 0.0649 |
|
60 |
+
| 84.6375 | 2.0 | 90 | 9.4999 | 0.5191 | 0.5 | 0.5094 | 0.4634 | 0.3453 |
|
61 |
+
| 26.6202 | 3.0 | 135 | 4.9217 | 0.6025 | 0.7060 | 0.6502 | 0.6119 | 0.7708 |
|
62 |
+
| 11.9124 | 4.0 | 180 | 4.0265 | 0.6567 | 0.7338 | 0.6931 | 0.6749 | 0.8411 |
|
63 |
+
| 7.1611 | 5.0 | 225 | 3.6002 | 0.6822 | 0.7647 | 0.7211 | 0.6985 | 0.8569 |
|
64 |
+
| 5.4223 | 6.0 | 270 | 3.6653 | 0.7199 | 0.7687 | 0.7435 | 0.7191 | 0.8578 |
|
65 |
+
| 4.1914 | 7.0 | 315 | 3.6212 | 0.7156 | 0.7711 | 0.7423 | 0.7201 | 0.8628 |
|
66 |
+
| 3.4499 | 8.0 | 360 | 3.9382 | 0.7019 | 0.7836 | 0.7405 | 0.7078 | 0.8662 |
|
67 |
+
| 2.8646 | 9.0 | 405 | 4.0638 | 0.7059 | 0.7856 | 0.7436 | 0.7093 | 0.8652 |
|
68 |
+
| 2.3159 | 10.0 | 450 | 4.1920 | 0.7117 | 0.7751 | 0.7421 | 0.7127 | 0.8682 |
|
69 |
+
| 2.3159 | 11.0 | 495 | 4.3891 | 0.7110 | 0.7736 | 0.7410 | 0.7142 | 0.8731 |
|
70 |
+
| 1.8513 | 12.0 | 540 | 4.4429 | 0.7295 | 0.7821 | 0.7549 | 0.7231 | 0.8741 |
|
71 |
+
| 1.6003 | 13.0 | 585 | 4.7107 | 0.7317 | 0.7841 | 0.7570 | 0.7211 | 0.8775 |
|
72 |
+
| 1.3617 | 14.0 | 630 | 4.8732 | 0.7311 | 0.7751 | 0.7525 | 0.7231 | 0.8721 |
|
73 |
+
| 1.0467 | 15.0 | 675 | 5.0702 | 0.7230 | 0.7816 | 0.7511 | 0.7211 | 0.8687 |
|
74 |
+
| 0.9095 | 16.0 | 720 | 5.1884 | 0.7377 | 0.7935 | 0.7646 | 0.7304 | 0.8775 |
|
75 |
+
| 0.7422 | 17.0 | 765 | 5.1458 | 0.7267 | 0.7831 | 0.7538 | 0.7182 | 0.8711 |
|
76 |
+
| 0.6169 | 18.0 | 810 | 5.5018 | 0.7326 | 0.7836 | 0.7572 | 0.7231 | 0.8711 |
|
77 |
+
| 0.5221 | 19.0 | 855 | 5.3967 | 0.7375 | 0.7801 | 0.7582 | 0.7260 | 0.8687 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.55.0
|
83 |
+
- Pytorch 2.7.0+cu126
|
84 |
+
- Datasets 3.6.0
|
85 |
+
- Tokenizers 0.21.4
|
intent_report_test.txt
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
precision recall f1-score support
|
2 |
+
|
3 |
+
0 0.91 0.97 0.94 88
|
4 |
+
1 0.84 0.89 0.86 36
|
5 |
+
2 0.95 1.00 0.97 35
|
6 |
+
3 0.93 0.80 0.86 35
|
7 |
+
4 0.89 0.92 0.91 26
|
8 |
+
5 0.00 0.00 0.00 1
|
9 |
+
6 0.71 0.81 0.76 43
|
10 |
+
7 0.75 0.75 0.75 4
|
11 |
+
8 1.00 1.00 1.00 18
|
12 |
+
9 0.94 0.90 0.92 72
|
13 |
+
10 0.97 1.00 0.99 39
|
14 |
+
11 0.71 1.00 0.83 15
|
15 |
+
12 0.71 0.60 0.65 169
|
16 |
+
13 0.95 0.96 0.95 156
|
17 |
+
14 0.86 0.92 0.89 13
|
18 |
+
15 0.58 0.92 0.71 12
|
19 |
+
16 0.68 0.95 0.79 22
|
20 |
+
17 0.69 0.92 0.79 26
|
21 |
+
18 0.91 0.78 0.84 27
|
22 |
+
19 0.77 0.87 0.82 31
|
23 |
+
20 0.84 0.88 0.86 41
|
24 |
+
21 0.90 0.90 0.90 39
|
25 |
+
22 0.83 0.86 0.85 124
|
26 |
+
23 1.00 0.91 0.95 34
|
27 |
+
24 1.00 0.90 0.95 10
|
28 |
+
25 1.00 1.00 1.00 19
|
29 |
+
26 0.91 0.88 0.89 57
|
30 |
+
27 0.87 0.80 0.83 25
|
31 |
+
28 0.25 0.33 0.29 6
|
32 |
+
29 1.00 0.50 0.67 6
|
33 |
+
30 0.94 0.94 0.94 67
|
34 |
+
31 0.94 0.81 0.87 21
|
35 |
+
32 0.79 0.82 0.80 126
|
36 |
+
33 0.97 0.93 0.95 114
|
37 |
+
34 1.00 0.88 0.94 26
|
38 |
+
35 0.92 1.00 0.96 11
|
39 |
+
36 0.85 0.89 0.87 72
|
40 |
+
37 0.00 0.00 0.00 0
|
41 |
+
38 0.92 0.80 0.86 15
|
42 |
+
39 0.92 0.92 0.92 25
|
43 |
+
40 0.95 0.98 0.97 43
|
44 |
+
41 0.17 0.33 0.22 3
|
45 |
+
42 0.92 0.90 0.91 51
|
46 |
+
43 0.80 0.89 0.84 36
|
47 |
+
44 0.98 0.92 0.95 119
|
48 |
+
45 0.91 0.87 0.89 176
|
49 |
+
46 0.89 0.97 0.93 32
|
50 |
+
47 0.97 0.91 0.94 81
|
51 |
+
48 0.98 0.98 0.98 41
|
52 |
+
49 0.81 0.87 0.84 141
|
53 |
+
50 0.95 0.92 0.93 209
|
54 |
+
51 0.92 0.94 0.93 35
|
55 |
+
52 1.00 1.00 1.00 21
|
56 |
+
53 0.91 0.92 0.91 52
|
57 |
+
54 0.92 1.00 0.96 23
|
58 |
+
55 0.74 0.70 0.72 20
|
59 |
+
56 1.00 0.97 0.99 36
|
60 |
+
57 0.85 0.83 0.84 35
|
61 |
+
58 0.91 0.84 0.88 63
|
62 |
+
59 0.88 0.84 0.86 51
|
63 |
+
|
64 |
+
accuracy 0.88 2974
|
65 |
+
macro avg 0.83 0.84 0.83 2974
|
66 |
+
weighted avg 0.89 0.88 0.88 2974
|
67 |
+
|
68 |
+
Confusion matrix:
|
69 |
+
[[85 0 0 ... 0 0 0]
|
70 |
+
[ 0 32 0 ... 1 0 0]
|
71 |
+
[ 0 0 35 ... 0 0 0]
|
72 |
+
...
|
73 |
+
[ 0 0 0 ... 29 0 0]
|
74 |
+
[ 0 0 0 ... 0 53 0]
|
75 |
+
[ 0 0 0 ... 0 1 43]]
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2240362200
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dedd304f9b7f8d37596277cc9d68b7c82f7bc4cc6cf9a1eb5d57b7ff1d22d10
|
3 |
size 2240362200
|
model_predict_test.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
slot_report_test.txt
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
precision recall f1-score support
|
2 |
+
|
3 |
+
alarm_type 0.40 1.00 0.57 2
|
4 |
+
app_name 0.36 1.00 0.53 5
|
5 |
+
artist_name 0.70 0.87 0.77 61
|
6 |
+
audiobook_author 1.00 0.80 0.89 5
|
7 |
+
audiobook_name 0.71 0.74 0.72 23
|
8 |
+
business_name 0.81 0.87 0.84 92
|
9 |
+
business_type 0.42 0.52 0.46 31
|
10 |
+
change_amount 0.60 0.67 0.63 9
|
11 |
+
coffee_type 0.60 0.75 0.67 4
|
12 |
+
color_type 0.53 0.73 0.61 26
|
13 |
+
cooking_type 0.56 0.62 0.59 8
|
14 |
+
currency_name 0.79 0.92 0.85 50
|
15 |
+
date 0.80 0.89 0.84 415
|
16 |
+
definition_word 0.85 0.88 0.87 51
|
17 |
+
device_type 0.70 0.75 0.73 57
|
18 |
+
drink_type 0.00 0.00 0.00 1
|
19 |
+
email_address 1.00 1.00 1.00 9
|
20 |
+
email_folder 0.57 0.80 0.67 5
|
21 |
+
event_name 0.63 0.69 0.66 260
|
22 |
+
food_type 0.62 0.74 0.67 72
|
23 |
+
game_name 0.86 0.92 0.89 26
|
24 |
+
general_frequency 0.57 0.65 0.60 20
|
25 |
+
house_place 0.84 0.88 0.86 58
|
26 |
+
ingredient 0.00 0.00 0.00 6
|
27 |
+
joke_type 0.83 0.91 0.87 11
|
28 |
+
list_name 0.79 0.74 0.76 61
|
29 |
+
meal_type 0.65 0.94 0.77 18
|
30 |
+
media_type 0.82 0.87 0.84 128
|
31 |
+
movie_name 0.25 0.50 0.33 2
|
32 |
+
movie_type 0.67 0.67 0.67 3
|
33 |
+
music_album 0.00 0.00 0.00 1
|
34 |
+
music_descriptor 0.11 0.29 0.16 7
|
35 |
+
music_genre 0.78 0.84 0.81 50
|
36 |
+
news_topic 0.42 0.48 0.45 52
|
37 |
+
order_type 0.56 0.90 0.69 20
|
38 |
+
person 0.77 0.87 0.82 216
|
39 |
+
personal_info 0.71 0.86 0.77 14
|
40 |
+
place_name 0.82 0.82 0.82 281
|
41 |
+
player_setting 0.53 0.57 0.55 40
|
42 |
+
playlist_name 0.31 0.27 0.29 15
|
43 |
+
podcast_descriptor 0.65 0.54 0.59 24
|
44 |
+
podcast_name 0.67 0.59 0.62 17
|
45 |
+
radio_name 0.66 0.70 0.68 33
|
46 |
+
relation 0.62 0.76 0.69 59
|
47 |
+
song_name 0.70 0.82 0.75 39
|
48 |
+
sport_type 0.00 0.00 0.00 0
|
49 |
+
time 0.70 0.72 0.71 191
|
50 |
+
time_zone 0.71 0.77 0.74 13
|
51 |
+
timeofday 0.67 0.70 0.68 60
|
52 |
+
transport_agency 0.90 1.00 0.95 9
|
53 |
+
transport_descriptor 0.25 0.50 0.33 2
|
54 |
+
transport_name 0.60 0.75 0.67 4
|
55 |
+
transport_type 0.84 0.86 0.85 65
|
56 |
+
weather_descriptor 0.70 0.78 0.74 82
|
57 |
+
|
58 |
+
micro avg 0.72 0.79 0.75 2813
|
59 |
+
macro avg 0.60 0.70 0.64 2813
|
60 |
+
weighted avg 0.73 0.79 0.75 2813
|