Update bit4-chat.py
Browse files- bit4-chat.py +38 -38
bit4-chat.py
CHANGED
@@ -1,38 +1,38 @@
|
|
1 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
2 |
-
import torch
|
3 |
-
|
4 |
-
# Configure quantization parameters
|
5 |
-
quantization_config = BitsAndBytesConfig(
|
6 |
-
load_in_4bit=True, # Load the model weights in 4-bit precision
|
7 |
-
bnb_4bit_compute_dtype=torch.bfloat16, # Use bfloat16 for computation
|
8 |
-
bnb_4bit_quant_type="nf4", # Use "nf4" quantization type
|
9 |
-
bnb_4bit_use_double_quant=True, # Enable double quantization
|
10 |
-
)
|
11 |
-
|
12 |
-
# Define the model name and path for the quantized model
|
13 |
-
model_name = "
|
14 |
-
|
15 |
-
# Load the quantized model with the specified configuration
|
16 |
-
model = AutoModelForCausalLM.from_pretrained(
|
17 |
-
model_name,
|
18 |
-
quantization_config=quantization_config,
|
19 |
-
device_map="auto" # Automatically allocate devices
|
20 |
-
)
|
21 |
-
|
22 |
-
# Load the tokenizer associated with the model
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
-
|
25 |
-
# Determine the device where the model is located
|
26 |
-
device = model.device
|
27 |
-
|
28 |
-
# Prepare input text and move it to the same device as the model
|
29 |
-
input_text = "Once upon a time"
|
30 |
-
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
31 |
-
|
32 |
-
# Perform inference
|
33 |
-
with torch.no_grad():
|
34 |
-
outputs = model.generate(**inputs, max_length=50)
|
35 |
-
|
36 |
-
# Decode the generated text
|
37 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
-
print(generated_text)
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
2 |
+
import torch
|
3 |
+
|
4 |
+
# Configure quantization parameters
|
5 |
+
quantization_config = BitsAndBytesConfig(
|
6 |
+
load_in_4bit=True, # Load the model weights in 4-bit precision
|
7 |
+
bnb_4bit_compute_dtype=torch.bfloat16, # Use bfloat16 for computation
|
8 |
+
bnb_4bit_quant_type="nf4", # Use "nf4" quantization type
|
9 |
+
bnb_4bit_use_double_quant=True, # Enable double quantization
|
10 |
+
)
|
11 |
+
|
12 |
+
# Define the model name and path for the quantized model
|
13 |
+
model_name = "nvidia/Llama-3.1-Nemotron-Nano-8B-v1-bnb-4bit"
|
14 |
+
|
15 |
+
# Load the quantized model with the specified configuration
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
model_name,
|
18 |
+
quantization_config=quantization_config,
|
19 |
+
device_map="auto" # Automatically allocate devices
|
20 |
+
)
|
21 |
+
|
22 |
+
# Load the tokenizer associated with the model
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
+
|
25 |
+
# Determine the device where the model is located
|
26 |
+
device = model.device
|
27 |
+
|
28 |
+
# Prepare input text and move it to the same device as the model
|
29 |
+
input_text = "Once upon a time"
|
30 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
31 |
+
|
32 |
+
# Perform inference
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model.generate(**inputs, max_length=50)
|
35 |
+
|
36 |
+
# Decode the generated text
|
37 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
+
print(generated_text)
|