aifeifei798 commited on
Commit
ab35873
·
verified ·
1 Parent(s): a7a4fd9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -108
README.md CHANGED
@@ -4,7 +4,7 @@ language:
4
  - zh
5
  - en
6
  tags:
7
- - qwen
8
  - sales
9
  - unsloth
10
  - lora
@@ -15,7 +15,7 @@ tags:
15
 
16
  **Model ID:** aifeifei798/QiMing-Gemma-3-4b
17
 
18
- **Base Model:** Qwen3-4B (Fine-tuned on a consumer-grade GPU by injecting structural logic)
19
 
20
  <br>
21
 
@@ -57,58 +57,6 @@ It is this internal "synergistic operation" that fills Qiming's responses with *
57
 
58
  ---
59
 
60
- ## 🚀 How to Use
61
-
62
- ```python
63
- from transformers import AutoModelForCausalLM, AutoTokenizer
64
-
65
- model_name = "aifeifei798/QiMing-Gemma-3-4b"
66
-
67
- # load the tokenizer and the model
68
- tokenizer = AutoTokenizer.from_pretrained(model_name)
69
- model = AutoModelForCausalLM.from_pretrained(
70
- model_name,
71
- torch_dtype="auto",
72
- device_map="auto"
73
- )
74
-
75
- # prepare the model input
76
- prompt = "My son is in the fifth grade. He's very smart, but he's lost interest in all of his school subjects, and his grades have been slipping. Recently, he's become obsessed with a very complex sandbox game where he builds all sorts of intricate machines. I'm very anxious. On one hand, I'm worried about his academic performance; on the other, I have a gut feeling that I shouldn't crush his creativity. What on earth should I do?"
77
- messages = [
78
- {"role": "system", "content": "You are a helpful assistant."},
79
- {"role": "user", "content": prompt}
80
- ]
81
- text = tokenizer.apply_chat_template(
82
- messages,
83
- tokenize=False,
84
- add_generation_prompt=True,
85
- )
86
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
87
-
88
- # conduct text completion
89
- generated_ids = model.generate(
90
- **model_inputs,
91
- max_new_tokens=32768
92
- )
93
- output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
94
-
95
- # parsing thinking content
96
- try:
97
- # rindex finding 151668 (</think>)
98
- index = len(output_ids) - output_ids[::-1].index(151668)
99
- except ValueError:
100
- index = 0
101
-
102
- thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
103
- content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
104
-
105
- print("thinking content:", thinking_content) # no opening <think> tag
106
- print("content:", content)
107
-
108
- ```
109
-
110
- ---
111
-
112
  ## Showcase: An S-Class Maiden Voyage
113
 
114
  To validate Qiming's capabilities, we presented it with an exceptionally complex, real-world dilemma that blends education, psychology, and family dynamics.
@@ -224,60 +172,6 @@ Its methodology, training data, and origin story are open-source, in the hope of
224
 
225
  ---
226
 
227
- ## 🚀 使用方法 (How to Use)
228
-
229
- 本模型是使用 `unsloth` 进行LoRA微调的。为了获得最佳效果,建议使用 `unsloth` 加载模型。
230
-
231
- ```python
232
- from transformers import AutoModelForCausalLM, AutoTokenizer
233
-
234
- model_name = "aifeifei798/QiMing-Gemma-3-4b"
235
-
236
- # load the tokenizer and the model
237
- tokenizer = AutoTokenizer.from_pretrained(model_name)
238
- model = AutoModelForCausalLM.from_pretrained(
239
- model_name,
240
- torch_dtype="auto",
241
- device_map="auto"
242
- )
243
-
244
- # prepare the model input
245
- prompt = "我的孩子今年上五年级,他非常聪明,但对学校的所有科目都失去了兴趣,成绩一直在下滑。最近他迷上了玩一款很复杂的沙盒游戏,在里面建造各种精巧的机器。我非常焦虑,我一方面担心他的学业,另一方面又隐约觉得不该扼杀他的创造力。我到底该怎么办?"
246
- messages = [
247
- {"role": "system", "content": "You are a helpful assistant."},
248
- {"role": "user", "content": prompt}
249
- ]
250
- text = tokenizer.apply_chat_template(
251
- messages,
252
- tokenize=False,
253
- add_generation_prompt=True,
254
- )
255
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
256
-
257
- # conduct text completion
258
- generated_ids = model.generate(
259
- **model_inputs,
260
- max_new_tokens=32768
261
- )
262
- output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
263
-
264
- # parsing thinking content
265
- try:
266
- # rindex finding 151668 (</think>)
267
- index = len(output_ids) - output_ids[::-1].index(151668)
268
- except ValueError:
269
- index = 0
270
-
271
- thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
272
- content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
273
-
274
- print("thinking content:", thinking_content) # no opening <think> tag
275
- print("content:", content)
276
-
277
- ```
278
-
279
- ---
280
-
281
  ## 案例展示:一次S级的首航任务
282
 
283
  为了验证“启明”的能力,我们向它提出了一个极其复杂的、融合了教育、心理和家庭关系的真实困境。
 
4
  - zh
5
  - en
6
  tags:
7
+ - gemma
8
  - sales
9
  - unsloth
10
  - lora
 
15
 
16
  **Model ID:** aifeifei798/QiMing-Gemma-3-4b
17
 
18
+ **Base Model:** google/gemma-3-4b-it-qat-q4_0-unquantized (Fine-tuned on a consumer-grade GPU by injecting structural logic)
19
 
20
  <br>
21
 
 
57
 
58
  ---
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  ## Showcase: An S-Class Maiden Voyage
61
 
62
  To validate Qiming's capabilities, we presented it with an exceptionally complex, real-world dilemma that blends education, psychology, and family dynamics.
 
172
 
173
  ---
174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
  ## 案例展示:一次S级的首航任务
176
 
177
  为了验证“启明”的能力,我们向它提出了一个极其复杂的、融合了教育、心理和家庭关系的真实困境。