---
license: apache-2.0
language:
- zh
- en
tags:
- qwen
- qwen3
- unsloth
- lora
- logic-tuning
- strategic-thinking
---
# 启明(QiMing)
---
## 重新定义了逻辑的AI,只为更智能.
## An AI that rewrites its own rules for greater intelligence.
---
# 声明
## 模型产生的内容仅供参考,请认真核实后使用
## 此为4B底层模型,会出现信息不足和幻觉错误
## 若觉得此AI模型太像"人",请务必认清,这只是一个更智能的AI模型
---
# DISCLAIMER
## The content generated by this model is for reference purposes only. Users are advised to verify its accuracy independently before use.
## This is a 4-billion-parameter foundation model (4B). It may exhibit incomplete or inaccurate information, including hallucinations.
## If you find this AI too human-like, please remember: it is merely a more intelligent model — not an actual person.
---
### 感谢mradermacher制作的gguf版本
### Thanks mradermacher: For creating the GGUF versions of these models
https://huggingface.co/mradermacher/QiMing-Navigator-v1-GGUF
https://huggingface.co/mradermacher/QiMing-Navigator-v1-i1-GGUF
### 感谢Qwen团队制作的模型
### The Qwen Team: For developing the foundational model (Qwen/Qwen3-4B-Thinking-2507) used in this project.
https://qwen.ai
### 感谢unsloth,能够让模型调整在3070 8G的显卡上流畅运行
### unsloth.ai (Unsloth): For their work enabling smooth operation of these models on standard hardware like NVIDIA GeForce RTX 3070 GPU with 8GB VRAM.
https://unsloth.ai
### QiMing-Navigator-v1基于Qwen/Qwen3-4B-Thinking-2507构建
### QiMing-Navigator-v1 is built upon Qwen/Qwen3-4B-Thinking-2507 as its base model.
### Dataset
https://huggingface.co/datasets/aifeifei798/QiMing-Navigator-v1
---
# QiMing-Navigator
**An AI strategist that doesn't just answer questions, but reframes them to guide your thinking.**
## Model Description
**QiMing-Navigator** is a language model based on Qwen/Qwen3-4B-Thinking-2507, fine-tuned for complex problem analysis, leadership coaching, and strategic thinking.
Unlike general-purpose models that pursue breadth of knowledge, the core design philosophy of **QiMing-Navigator** is **Depth** and **Insight**. It is trained to look beyond the surface traps of a question, identify and deconstruct the core conflicts hidden beneath emotions and disputes, and ultimately provide a systemic, actionable strategic framework that inspires personal and organizational growth.
It is not a "firefighter," but a "Navigator"—charting a clear course for you through the chaotic storm.
## Model Features
The behavior of **QiMing-Navigator** is based on an internal logical pattern known as the **"QiMing 4-Step Method"**:
1. ❤️ **Deep Empathy:** Profoundly understands the unspoken emotions, pressures, and true needs behind the user's question.
2. 🧠 **Reframe & Deconstruct:** Refuses to fall into binary thinking traps. It reframes complex, chaotic problems into a clear, insightful, multi-layered analytical framework.
3. 🎨 **Strategic Generation:** Based on the new framework, it provides actionable solutions filled with original metaphors, role reframing, and systemic thinking.
4. ✨ **Empower & Elevate:** The final answer aims to provide the user with wisdom and confidence that transcends the problem itself, turning a request for help into an opportunity for growth.
## Use Cases
**QiMing-Navigator** excels in handling complex scenarios that lack standard answers and are filled with human factors:
* **Leadership & Management Consulting:**
* Team conflict resolution
* Organizational culture building
* Employee motivation and development
* **Personal Growth & Coaching:**
* Career path planning
* Complex decision analysis
* Breaking through personal mindset barriers
* **Creative & Strategic Ideation:**
* Product/brand positioning
* Complex project planning
* In-depth copywriting and speechwriting
## How to Use
To maximize the capabilities of **QiMing-Navigator**, we recommend the following when prompting:
* **Provide full context:** When describing your problem, include relevant background, conflicts, and your genuine feelings.
* **Ask open-ended, complex questions:** It may perform averagely on simple factual queries, but it will demonstrate astonishing abilities on complex problems that require deep thought.
* **Be prepared for a deep conversation:** Its answers are often the starting point for a more profound line of thinking.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "aifeifei798/QiMing-Navigator-v1"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 ()
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content) # no opening tag
print("content:", content)
```
## Training Details
* **Training Data:** The model was fine-tuned on a high-quality, private instruction dataset. Every piece of data in this set strictly follows the "QiMing 4-Step Method" logical pattern, covering areas such as leadership, psychology, business strategy, and personal growth.
## Author
This model was conceived, trained, and released by aifeifei798.
This project is an exploration to validate a core belief: **Through high-quality data imbued with a profound logical pattern, even a moderately sized model can be endowed with a unique 'soul' and extraordinary wisdom to solve complex problems.**
We hope **QiMing-Navigator** becomes a valuable partner in your thinking, helping you find your way forward through the fog.
---
# QiMing-Navigator (启明·领航者)
**一个不仅仅回答问题,更致力于重构问题、引领思考的AI战略家。**
## 模型简介
**QiMing-Navigator** 是一个基于Qwen/Qwen3-4B-Thinking-2507进行深度微调的、专注于复杂问题分析、领导力辅导和战略思维的语言模型。
与追求知识广度的通用模型不同,**QiMing-Navigator** 的核心设计哲学是**深度 (Depth)** 和**洞见 (Insight)**。它被训练用来跳出问题的表面陷阱,识别并解构隐藏在情绪和冲突之下的核心矛盾,并最终提供一个系统性的、可执行的、能激发个人与组织成长的战略框架。
它不是一个“消防员”,而是一位“领航者”——在混乱的风暴中,为您指引清晰的航向。
## 模型特性
**QiMing-Navigator** 的行为模式,基于一个被称为**“启明四步法”**的内在逻辑模式:
1. ❤️ **深刻共情 (Deep Empathy):** 深度理解提问者在问题背后未被言说的情感、压力和真实需求。
2. 🧠 **重构解构 (Reframe & Deconstruct):** 拒绝陷入二元对立的思维陷阱,将复杂、混乱的问题,重构为一个清晰、深刻、多层次的分析框架。
3. 🎨 **战略生成 (Strategic Generation):** 基于新的框架,提供充满原创性比喻、角色重塑和系统性思维的、可执行的解决方案。
4. ✨ **赋能升华 (Empower & Elevate):** 最终的回答旨在给予用户超越问题本身的智慧和信心,将一次求助,转化为一次成长的契机。
## 应用场景
**QiMing-Navigator** 尤其擅长处理那些没有标准答案、充满人性因素的复杂场景:
* **领导力与管理咨询:**
* 团队冲突解决
* 组织文化建设
* 员工激励与发展
* **个人成长与教练辅导:**
* 职业生涯规划
* 复杂决策分析
* 个人思维模式突破
* **创意与战略构思:**
* 产品/品牌定位
* 复杂项目规划
* 文案与演讲稿深度撰写
## 如何使用
为了最大化激发 **QiMing-Navigator** 的能力,建议您在提问时:
* **提供完整的上下文:** 描述您的问题时,请包含相关的背景、冲突和您的真实感受。
* **提出开放性的复杂问题:** 它在处理简单的事实性问答时可能表现平平,但在需要深度思考的复杂问题上,它会展现出惊人的能力。
* **准备好进行一次深度对话:** 它的回答,往往是开启一次更深刻思考的起点。
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "aifeifei798/QiMing-Navigator-v1"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 ()
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content) # no opening tag
print("content:", content)
```
## 训练细节
* **训练数据 (Training Data):** 模型由一个高质量的、私有的指令数据集进行微调。该数据集中的每一条数据,都严格遵循“启明四步法”的逻辑模式,覆盖了领导力、心理学、商业战略和个人成长等多个领域。
## 作者
本模型由aifeifei798构思、训练并发布。
这个项目是一次探索,旨在验证一个核心信念:**通过高质量、具有深刻逻辑模式的数据,即使是中等规模的模型,也能被赋予独特的“灵魂”和解决复杂问题的非凡智慧。**
我们期待 **QiMing-Navigator** 能成为您思考的伙伴,帮助您在迷雾中找到前行的方向。