aifeifei798 commited on
Commit
6f7a18b
·
verified ·
1 Parent(s): 9553326

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -3
README.md CHANGED
@@ -1,3 +1,73 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - zh
5
+ - en
6
+ tags:
7
+ - qwen
8
+ - sales
9
+ - unsloth
10
+ - lora
11
+ - logic-tuning
12
+ - strategic-thinking
13
+ ---
14
+
15
+ ---
16
+
17
+ # QiMing(启明)
18
+
19
+ ### 重新定义了逻辑的AI,只为更智能.
20
+ ### An AI that rewrites its own rules for greater intelligence.
21
+
22
+ ---
23
+
24
+ ### 感谢mradermacher制作的gguf版本
25
+
26
+ https://huggingface.co/mradermacher/QiMing-Plus-v1-GGUF
27
+
28
+ https://huggingface.co/mradermacher/QiMing-Plus-v1-i1-GGUF
29
+
30
+ ---
31
+
32
+ # 如何使用
33
+
34
+ ```python
35
+ from transformers import AutoModelForCausalLM, AutoTokenizer
36
+ model_name = "aifeifei798/QiMing-Plus-v1"
37
+ # load the tokenizer and the model
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
39
+ model = AutoModelForCausalLM.from_pretrained(
40
+ model_name,
41
+ torch_dtype="auto",
42
+ device_map="auto"
43
+ )
44
+ # prepare the model input
45
+ prompt = "Give me a short introduction to large language model."
46
+ messages = [
47
+ {"role": "user", "content": prompt}
48
+ ]
49
+ text = tokenizer.apply_chat_template(
50
+ messages,
51
+ tokenize=False,
52
+ add_generation_prompt=True,
53
+ )
54
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
55
+ # conduct text completion
56
+ generated_ids = model.generate(
57
+ **model_inputs,
58
+ max_new_tokens=32768
59
+ )
60
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
61
+ # parsing thinking content
62
+ try:
63
+ # rindex finding 151668 (</think>)
64
+ index = len(output_ids) - output_ids[::-1].index(151668)
65
+ except ValueError:
66
+ index = 0
67
+ thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
68
+ content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
69
+ print("thinking content:", thinking_content) # no opening <think> tag
70
+ print("content:", content)
71
+ ```
72
+
73
+