--- license: apache-2.0 language: - zh - en tags: - qwen - sales - unsloth - lora - logic-tuning - strategic-thinking --- # 启明(QiMing) --- ## 重新定义了逻辑的AI,只为更智能. ## An AI that rewrites its own rules for greater intelligence. --- # 声明 ## 模型产生的内容仅供参考,请认真核实后使用 ## 此为4B底层模型,会出现信息不足和幻觉错误 ## 若觉得此AI模型太像"人",请务必认清,这只是一个更智能的AI模型 --- # DISCLAIMER ## The content generated by this model is for reference purposes only. Users are advised to verify its accuracy independently before use. ## This is a 4-billion-parameter foundation model (4B). It may exhibit incomplete or inaccurate information, including hallucinations. ## If you find this AI too human-like, please remember: it is merely a more intelligent model — not an actual person. --- ### 感谢mradermacher制作的gguf版本 ### Thanks mradermacher: For creating the GGUF versions of these models https://huggingface.co/mradermacher/QiMing-Plus-v1-GGUF https://huggingface.co/mradermacher/QiMing-Plus-v1-i1-GGUF ### 感谢Qwen团队制作的模型 ### The Qwen Team: For developing the foundational model (Qwen/Qwen3-4B-Thinking-2507) used in this project. https://qwen.ai ### 感谢unsloth,能够让模型调整在3070 8G的显卡上流畅运行 ### unsloth.ai (Unsloth): For their work enabling smooth operation of these models on standard hardware like NVIDIA GeForce RTX 3070 GPU with 8GB VRAM. https://unsloth.ai ### QiMing-Plus-v1基于Qwen/Qwen3-4B-Thinking-2507构建 ### QiMing-Plus-v1 is built upon Qwen/Qwen3-4B-Thinking-2507 as its base model. ### Dataset https://huggingface.co/datasets/aifeifei798/QiMing_Plus_dataset --- # 如何使用 (how to use) ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "aifeifei798/QiMing-Plus-v1" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 () index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) # no opening tag print("content:", content) ```