PumeTu commited on
Commit
1e38607
·
verified ·
1 Parent(s): 05b1c75

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. Modelfile +14 -0
  3. README.md +118 -0
  4. adapter_config.json +39 -0
  5. adapter_model.safetensors +3 -0
  6. added_tokens.json +28 -0
  7. all_results.json +12 -0
  8. chat_template.jinja +89 -0
  9. checkpoint-450/README.md +202 -0
  10. checkpoint-450/adapter_config.json +39 -0
  11. checkpoint-450/added_tokens.json +28 -0
  12. checkpoint-450/chat_template.jinja +89 -0
  13. checkpoint-450/merges.txt +0 -0
  14. checkpoint-450/special_tokens_map.json +31 -0
  15. checkpoint-450/tokenizer_config.json +240 -0
  16. checkpoint-450/trainer_state.json +3544 -0
  17. checkpoint-450/vocab.json +0 -0
  18. checkpoint-500/README.md +202 -0
  19. checkpoint-522/README.md +202 -0
  20. checkpoint-522/adapter_config.json +39 -0
  21. checkpoint-522/added_tokens.json +28 -0
  22. checkpoint-522/chat_template.jinja +89 -0
  23. checkpoint-522/merges.txt +0 -0
  24. checkpoint-522/special_tokens_map.json +31 -0
  25. checkpoint-522/tokenizer_config.json +240 -0
  26. checkpoint-522/trainer_state.json +0 -0
  27. checkpoint-522/vocab.json +0 -0
  28. config.json +30 -0
  29. dataset/dataset_dict.json +1 -0
  30. eval_results.json +7 -0
  31. generation_config.json +13 -0
  32. merges.txt +0 -0
  33. model-00001-of-00027.safetensors +3 -0
  34. model-00004-of-00027.safetensors +3 -0
  35. model-00006-of-00027.safetensors +3 -0
  36. model-00012-of-00027.safetensors +3 -0
  37. model-00019-of-00027.safetensors +3 -0
  38. model-00024-of-00027.safetensors +3 -0
  39. model-00025-of-00027.safetensors +3 -0
  40. model-00026-of-00027.safetensors +3 -0
  41. model.safetensors.index.json +714 -0
  42. special_tokens_map.json +31 -0
  43. tokenizer.json +3 -0
  44. tokenizer_config.json +240 -0
  45. train_results.json +8 -0
  46. trainer_log.jsonl +0 -0
  47. trainer_state.json +0 -0
  48. training_args.bin +3 -0
  49. training_eval_loss.png +0 -0
  50. training_loss.png +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
Modelfile ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ollama modelfile auto-generated by llamafactory
2
+
3
+ FROM .
4
+
5
+ TEMPLATE """{{ if .System }}<|im_start|>system
6
+ {{ .System }}<|im_end|>
7
+ {{ end }}{{ range .Messages }}{{ if eq .Role "user" }}<|im_start|>user
8
+ {{ .Content }}<|im_end|>
9
+ <|im_start|>assistant
10
+ {{ else if eq .Role "assistant" }}{{ .Content }}<|im_end|>
11
+ {{ end }}{{ end }}"""
12
+
13
+ PARAMETER stop "<|im_end|>"
14
+ PARAMETER num_ctx 4096
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: Qwen/Qwen3-32B
5
+ tags:
6
+ - llama-factory
7
+ - lora
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct-seed-4201
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct-seed-4201
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen3-32B](https://huggingface.co//Qwen/Qwen3-32B) on the alpaca-th-52k, the dolly-th-15k and the wangchan-instruct datasets.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.6413
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0002
41
+ - train_batch_size: 2
42
+ - eval_batch_size: 2
43
+ - seed: 4201
44
+ - distributed_type: multi-GPU
45
+ - num_devices: 32
46
+ - gradient_accumulation_steps: 8
47
+ - total_train_batch_size: 512
48
+ - total_eval_batch_size: 64
49
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
50
+ - lr_scheduler_type: cosine
51
+ - lr_scheduler_warmup_ratio: 0.1
52
+ - num_epochs: 3.0
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss |
57
+ |:-------------:|:------:|:----:|:---------------:|
58
+ | 0.9293 | 0.0575 | 10 | 1.0471 |
59
+ | 0.8085 | 0.1149 | 20 | 0.8245 |
60
+ | 0.7547 | 0.1724 | 30 | 0.7581 |
61
+ | 0.7289 | 0.2299 | 40 | 0.7386 |
62
+ | 0.6965 | 0.2874 | 50 | 0.7242 |
63
+ | 0.6848 | 0.3448 | 60 | 0.7109 |
64
+ | 0.693 | 0.4023 | 70 | 0.7022 |
65
+ | 0.7101 | 0.4598 | 80 | 0.6947 |
66
+ | 0.7293 | 0.5172 | 90 | 0.6888 |
67
+ | 0.6852 | 0.5747 | 100 | 0.6822 |
68
+ | 0.7033 | 0.6322 | 110 | 0.6770 |
69
+ | 0.6815 | 0.6897 | 120 | 0.6736 |
70
+ | 0.679 | 0.7471 | 130 | 0.6707 |
71
+ | 0.6571 | 0.8046 | 140 | 0.6682 |
72
+ | 0.6491 | 0.8621 | 150 | 0.6660 |
73
+ | 0.7015 | 0.9195 | 160 | 0.6636 |
74
+ | 0.6523 | 0.9770 | 170 | 0.6619 |
75
+ | 0.6672 | 1.0345 | 180 | 0.6602 |
76
+ | 0.6862 | 1.0920 | 190 | 0.6588 |
77
+ | 0.6755 | 1.1494 | 200 | 0.6577 |
78
+ | 0.6279 | 1.2069 | 210 | 0.6563 |
79
+ | 0.6622 | 1.2644 | 220 | 0.6551 |
80
+ | 0.6329 | 1.3218 | 230 | 0.6542 |
81
+ | 0.6559 | 1.3793 | 240 | 0.6528 |
82
+ | 0.6389 | 1.4368 | 250 | 0.6517 |
83
+ | 0.6476 | 1.4943 | 260 | 0.6506 |
84
+ | 0.6412 | 1.5517 | 270 | 0.6497 |
85
+ | 0.6232 | 1.6092 | 280 | 0.6485 |
86
+ | 0.6243 | 1.6667 | 290 | 0.6478 |
87
+ | 0.6467 | 1.7241 | 300 | 0.6469 |
88
+ | 0.6146 | 1.7816 | 310 | 0.6460 |
89
+ | 0.6386 | 1.8391 | 320 | 0.6450 |
90
+ | 0.6456 | 1.8966 | 330 | 0.6443 |
91
+ | 0.6402 | 1.9540 | 340 | 0.6437 |
92
+ | 0.6455 | 2.0115 | 350 | 0.6434 |
93
+ | 0.5888 | 2.0690 | 360 | 0.6437 |
94
+ | 0.6267 | 2.1264 | 370 | 0.6435 |
95
+ | 0.6292 | 2.1839 | 380 | 0.6434 |
96
+ | 0.6058 | 2.2414 | 390 | 0.6432 |
97
+ | 0.6221 | 2.2989 | 400 | 0.6427 |
98
+ | 0.6254 | 2.3563 | 410 | 0.6428 |
99
+ | 0.6178 | 2.4138 | 420 | 0.6423 |
100
+ | 0.6161 | 2.4713 | 430 | 0.6420 |
101
+ | 0.634 | 2.5287 | 440 | 0.6419 |
102
+ | 0.6241 | 2.5862 | 450 | 0.6418 |
103
+ | 0.6084 | 2.6437 | 460 | 0.6416 |
104
+ | 0.6264 | 2.7011 | 470 | 0.6415 |
105
+ | 0.608 | 2.7586 | 480 | 0.6413 |
106
+ | 0.6039 | 2.8161 | 490 | 0.6413 |
107
+ | 0.6445 | 2.8736 | 500 | 0.6413 |
108
+ | 0.6249 | 2.9310 | 510 | 0.6413 |
109
+ | 0.6006 | 2.9885 | 520 | 0.6413 |
110
+
111
+
112
+ ### Framework versions
113
+
114
+ - PEFT 0.15.2
115
+ - Transformers 4.52.3
116
+ - Pytorch 2.7.0+cu126
117
+ - Datasets 3.6.0
118
+ - Tokenizers 0.21.1
adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/project/lt200252-wcbart/pumet/models/Qwen3-32B",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "q_proj",
28
+ "down_proj",
29
+ "gate_proj",
30
+ "o_proj",
31
+ "k_proj",
32
+ "up_proj",
33
+ "v_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:453ebc8f5c1bea2bd1524f679458ecb8dcf688b79fb369961e2c028fc821299c
3
+ size 268555264
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
all_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_loss": 0.6412659883499146,
4
+ "eval_runtime": 413.4377,
5
+ "eval_samples_per_second": 23.941,
6
+ "eval_steps_per_second": 0.375,
7
+ "total_flos": 5.0940118456365744e+19,
8
+ "train_loss": 0.6584736234383565,
9
+ "train_runtime": 47270.2985,
10
+ "train_samples_per_second": 5.653,
11
+ "train_steps_per_second": 0.011
12
+ }
chat_template.jinja ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n' }}
86
+ {%- if enable_thinking is defined and enable_thinking is false %}
87
+ {{- '<think>\n\n</think>\n\n' }}
88
+ {%- endif %}
89
+ {%- endif %}
checkpoint-450/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /project/lt200252-wcbart/pumet/models/Qwen3-32B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-450/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/project/lt200252-wcbart/pumet/models/Qwen3-32B",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "q_proj",
28
+ "down_proj",
29
+ "gate_proj",
30
+ "o_proj",
31
+ "k_proj",
32
+ "up_proj",
33
+ "v_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-450/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
checkpoint-450/chat_template.jinja ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n' }}
86
+ {%- if enable_thinking is defined and enable_thinking is false %}
87
+ {{- '<think>\n\n</think>\n\n' }}
88
+ {%- endif %}
89
+ {%- endif %}
checkpoint-450/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-450/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-450/tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "padding_side": "right",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
checkpoint-450/trainer_state.json ADDED
@@ -0,0 +1,3544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.586206896551724,
6
+ "eval_steps": 10,
7
+ "global_step": 450,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.005747126436781609,
14
+ "grad_norm": 0.10123365372419357,
15
+ "learning_rate": 0.0,
16
+ "loss": 0.9918,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.011494252873563218,
21
+ "grad_norm": 0.09671098738908768,
22
+ "learning_rate": 3.7735849056603773e-06,
23
+ "loss": 0.9604,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.017241379310344827,
28
+ "grad_norm": 0.0981190875172615,
29
+ "learning_rate": 7.547169811320755e-06,
30
+ "loss": 0.9868,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.022988505747126436,
35
+ "grad_norm": 0.10396745055913925,
36
+ "learning_rate": 1.1320754716981132e-05,
37
+ "loss": 0.962,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.028735632183908046,
42
+ "grad_norm": 0.0982985869050026,
43
+ "learning_rate": 1.509433962264151e-05,
44
+ "loss": 0.9684,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.034482758620689655,
49
+ "grad_norm": 0.10332155227661133,
50
+ "learning_rate": 1.8867924528301888e-05,
51
+ "loss": 0.9442,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.040229885057471264,
56
+ "grad_norm": 0.1124059334397316,
57
+ "learning_rate": 2.2641509433962265e-05,
58
+ "loss": 0.9382,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.04597701149425287,
63
+ "grad_norm": 0.12120208889245987,
64
+ "learning_rate": 2.641509433962264e-05,
65
+ "loss": 0.9416,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.05172413793103448,
70
+ "grad_norm": 0.12729395925998688,
71
+ "learning_rate": 3.018867924528302e-05,
72
+ "loss": 0.9356,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.05747126436781609,
77
+ "grad_norm": 0.13560789823532104,
78
+ "learning_rate": 3.39622641509434e-05,
79
+ "loss": 0.9293,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.05747126436781609,
84
+ "eval_loss": 1.0470749139785767,
85
+ "eval_runtime": 412.2553,
86
+ "eval_samples_per_second": 24.009,
87
+ "eval_steps_per_second": 0.376,
88
+ "step": 10
89
+ },
90
+ {
91
+ "epoch": 0.06321839080459771,
92
+ "grad_norm": 0.1474100798368454,
93
+ "learning_rate": 3.7735849056603776e-05,
94
+ "loss": 0.9533,
95
+ "step": 11
96
+ },
97
+ {
98
+ "epoch": 0.06896551724137931,
99
+ "grad_norm": 0.16510824859142303,
100
+ "learning_rate": 4.150943396226415e-05,
101
+ "loss": 0.9206,
102
+ "step": 12
103
+ },
104
+ {
105
+ "epoch": 0.07471264367816093,
106
+ "grad_norm": 0.17097796499729156,
107
+ "learning_rate": 4.528301886792453e-05,
108
+ "loss": 0.8921,
109
+ "step": 13
110
+ },
111
+ {
112
+ "epoch": 0.08045977011494253,
113
+ "grad_norm": 0.17923878133296967,
114
+ "learning_rate": 4.9056603773584906e-05,
115
+ "loss": 0.8861,
116
+ "step": 14
117
+ },
118
+ {
119
+ "epoch": 0.08620689655172414,
120
+ "grad_norm": 0.18173959851264954,
121
+ "learning_rate": 5.283018867924528e-05,
122
+ "loss": 0.8904,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.09195402298850575,
127
+ "grad_norm": 0.17235629260540009,
128
+ "learning_rate": 5.660377358490566e-05,
129
+ "loss": 0.8424,
130
+ "step": 16
131
+ },
132
+ {
133
+ "epoch": 0.09770114942528736,
134
+ "grad_norm": 0.16792210936546326,
135
+ "learning_rate": 6.037735849056604e-05,
136
+ "loss": 0.8395,
137
+ "step": 17
138
+ },
139
+ {
140
+ "epoch": 0.10344827586206896,
141
+ "grad_norm": 0.14939646422863007,
142
+ "learning_rate": 6.415094339622641e-05,
143
+ "loss": 0.8203,
144
+ "step": 18
145
+ },
146
+ {
147
+ "epoch": 0.10919540229885058,
148
+ "grad_norm": 0.14632105827331543,
149
+ "learning_rate": 6.79245283018868e-05,
150
+ "loss": 0.8464,
151
+ "step": 19
152
+ },
153
+ {
154
+ "epoch": 0.11494252873563218,
155
+ "grad_norm": 0.14770475029945374,
156
+ "learning_rate": 7.169811320754717e-05,
157
+ "loss": 0.8085,
158
+ "step": 20
159
+ },
160
+ {
161
+ "epoch": 0.11494252873563218,
162
+ "eval_loss": 0.8244547247886658,
163
+ "eval_runtime": 404.4489,
164
+ "eval_samples_per_second": 24.473,
165
+ "eval_steps_per_second": 0.383,
166
+ "step": 20
167
+ },
168
+ {
169
+ "epoch": 0.1206896551724138,
170
+ "grad_norm": 0.1725720465183258,
171
+ "learning_rate": 7.547169811320755e-05,
172
+ "loss": 0.8219,
173
+ "step": 21
174
+ },
175
+ {
176
+ "epoch": 0.12643678160919541,
177
+ "grad_norm": 0.1685618907213211,
178
+ "learning_rate": 7.924528301886794e-05,
179
+ "loss": 0.8148,
180
+ "step": 22
181
+ },
182
+ {
183
+ "epoch": 0.13218390804597702,
184
+ "grad_norm": 0.1653290092945099,
185
+ "learning_rate": 8.30188679245283e-05,
186
+ "loss": 0.7846,
187
+ "step": 23
188
+ },
189
+ {
190
+ "epoch": 0.13793103448275862,
191
+ "grad_norm": 0.16122524440288544,
192
+ "learning_rate": 8.679245283018869e-05,
193
+ "loss": 0.7903,
194
+ "step": 24
195
+ },
196
+ {
197
+ "epoch": 0.14367816091954022,
198
+ "grad_norm": 0.12793505191802979,
199
+ "learning_rate": 9.056603773584906e-05,
200
+ "loss": 0.7741,
201
+ "step": 25
202
+ },
203
+ {
204
+ "epoch": 0.14942528735632185,
205
+ "grad_norm": 0.10620377957820892,
206
+ "learning_rate": 9.433962264150944e-05,
207
+ "loss": 0.7308,
208
+ "step": 26
209
+ },
210
+ {
211
+ "epoch": 0.15517241379310345,
212
+ "grad_norm": 0.10993366688489914,
213
+ "learning_rate": 9.811320754716981e-05,
214
+ "loss": 0.7559,
215
+ "step": 27
216
+ },
217
+ {
218
+ "epoch": 0.16091954022988506,
219
+ "grad_norm": 0.11916384100914001,
220
+ "learning_rate": 0.0001018867924528302,
221
+ "loss": 0.7622,
222
+ "step": 28
223
+ },
224
+ {
225
+ "epoch": 0.16666666666666666,
226
+ "grad_norm": 0.13500399887561798,
227
+ "learning_rate": 0.00010566037735849057,
228
+ "loss": 0.7436,
229
+ "step": 29
230
+ },
231
+ {
232
+ "epoch": 0.1724137931034483,
233
+ "grad_norm": 0.12777844071388245,
234
+ "learning_rate": 0.00010943396226415095,
235
+ "loss": 0.7547,
236
+ "step": 30
237
+ },
238
+ {
239
+ "epoch": 0.1724137931034483,
240
+ "eval_loss": 0.7580565214157104,
241
+ "eval_runtime": 404.708,
242
+ "eval_samples_per_second": 24.457,
243
+ "eval_steps_per_second": 0.383,
244
+ "step": 30
245
+ },
246
+ {
247
+ "epoch": 0.1781609195402299,
248
+ "grad_norm": 0.11721828579902649,
249
+ "learning_rate": 0.00011320754716981132,
250
+ "loss": 0.7337,
251
+ "step": 31
252
+ },
253
+ {
254
+ "epoch": 0.1839080459770115,
255
+ "grad_norm": 0.08667382597923279,
256
+ "learning_rate": 0.0001169811320754717,
257
+ "loss": 0.7538,
258
+ "step": 32
259
+ },
260
+ {
261
+ "epoch": 0.1896551724137931,
262
+ "grad_norm": 0.06665026396512985,
263
+ "learning_rate": 0.00012075471698113207,
264
+ "loss": 0.7186,
265
+ "step": 33
266
+ },
267
+ {
268
+ "epoch": 0.19540229885057472,
269
+ "grad_norm": 0.04627465456724167,
270
+ "learning_rate": 0.00012452830188679244,
271
+ "loss": 0.7719,
272
+ "step": 34
273
+ },
274
+ {
275
+ "epoch": 0.20114942528735633,
276
+ "grad_norm": 0.04290887340903282,
277
+ "learning_rate": 0.00012830188679245283,
278
+ "loss": 0.752,
279
+ "step": 35
280
+ },
281
+ {
282
+ "epoch": 0.20689655172413793,
283
+ "grad_norm": 0.056834809482097626,
284
+ "learning_rate": 0.0001320754716981132,
285
+ "loss": 0.7429,
286
+ "step": 36
287
+ },
288
+ {
289
+ "epoch": 0.21264367816091953,
290
+ "grad_norm": 0.062055498361587524,
291
+ "learning_rate": 0.0001358490566037736,
292
+ "loss": 0.7208,
293
+ "step": 37
294
+ },
295
+ {
296
+ "epoch": 0.21839080459770116,
297
+ "grad_norm": 0.070551298558712,
298
+ "learning_rate": 0.00013962264150943395,
299
+ "loss": 0.7651,
300
+ "step": 38
301
+ },
302
+ {
303
+ "epoch": 0.22413793103448276,
304
+ "grad_norm": 0.07514140754938126,
305
+ "learning_rate": 0.00014339622641509434,
306
+ "loss": 0.7456,
307
+ "step": 39
308
+ },
309
+ {
310
+ "epoch": 0.22988505747126436,
311
+ "grad_norm": 0.06458627432584763,
312
+ "learning_rate": 0.00014716981132075472,
313
+ "loss": 0.7289,
314
+ "step": 40
315
+ },
316
+ {
317
+ "epoch": 0.22988505747126436,
318
+ "eval_loss": 0.7386028170585632,
319
+ "eval_runtime": 407.409,
320
+ "eval_samples_per_second": 24.295,
321
+ "eval_steps_per_second": 0.38,
322
+ "step": 40
323
+ },
324
+ {
325
+ "epoch": 0.23563218390804597,
326
+ "grad_norm": 0.056490588933229446,
327
+ "learning_rate": 0.0001509433962264151,
328
+ "loss": 0.7503,
329
+ "step": 41
330
+ },
331
+ {
332
+ "epoch": 0.2413793103448276,
333
+ "grad_norm": 0.036972932517528534,
334
+ "learning_rate": 0.0001547169811320755,
335
+ "loss": 0.7392,
336
+ "step": 42
337
+ },
338
+ {
339
+ "epoch": 0.2471264367816092,
340
+ "grad_norm": 0.038239240646362305,
341
+ "learning_rate": 0.00015849056603773587,
342
+ "loss": 0.7206,
343
+ "step": 43
344
+ },
345
+ {
346
+ "epoch": 0.25287356321839083,
347
+ "grad_norm": 0.033113010227680206,
348
+ "learning_rate": 0.00016226415094339625,
349
+ "loss": 0.7198,
350
+ "step": 44
351
+ },
352
+ {
353
+ "epoch": 0.25862068965517243,
354
+ "grad_norm": 0.03197947517037392,
355
+ "learning_rate": 0.0001660377358490566,
356
+ "loss": 0.7393,
357
+ "step": 45
358
+ },
359
+ {
360
+ "epoch": 0.26436781609195403,
361
+ "grad_norm": 0.03696918115019798,
362
+ "learning_rate": 0.000169811320754717,
363
+ "loss": 0.7576,
364
+ "step": 46
365
+ },
366
+ {
367
+ "epoch": 0.27011494252873564,
368
+ "grad_norm": 0.04209383204579353,
369
+ "learning_rate": 0.00017358490566037738,
370
+ "loss": 0.7157,
371
+ "step": 47
372
+ },
373
+ {
374
+ "epoch": 0.27586206896551724,
375
+ "grad_norm": 0.035038772970438004,
376
+ "learning_rate": 0.00017735849056603776,
377
+ "loss": 0.7256,
378
+ "step": 48
379
+ },
380
+ {
381
+ "epoch": 0.28160919540229884,
382
+ "grad_norm": 0.03674735128879547,
383
+ "learning_rate": 0.00018113207547169812,
384
+ "loss": 0.7295,
385
+ "step": 49
386
+ },
387
+ {
388
+ "epoch": 0.28735632183908044,
389
+ "grad_norm": 0.046050041913986206,
390
+ "learning_rate": 0.0001849056603773585,
391
+ "loss": 0.6965,
392
+ "step": 50
393
+ },
394
+ {
395
+ "epoch": 0.28735632183908044,
396
+ "eval_loss": 0.724204421043396,
397
+ "eval_runtime": 405.0004,
398
+ "eval_samples_per_second": 24.439,
399
+ "eval_steps_per_second": 0.383,
400
+ "step": 50
401
+ },
402
+ {
403
+ "epoch": 0.29310344827586204,
404
+ "grad_norm": 0.036520447582006454,
405
+ "learning_rate": 0.00018867924528301889,
406
+ "loss": 0.7273,
407
+ "step": 51
408
+ },
409
+ {
410
+ "epoch": 0.2988505747126437,
411
+ "grad_norm": 0.03720232844352722,
412
+ "learning_rate": 0.00019245283018867927,
413
+ "loss": 0.7084,
414
+ "step": 52
415
+ },
416
+ {
417
+ "epoch": 0.3045977011494253,
418
+ "grad_norm": 0.03159736469388008,
419
+ "learning_rate": 0.00019622641509433963,
420
+ "loss": 0.7485,
421
+ "step": 53
422
+ },
423
+ {
424
+ "epoch": 0.3103448275862069,
425
+ "grad_norm": 0.03695262596011162,
426
+ "learning_rate": 0.0002,
427
+ "loss": 0.745,
428
+ "step": 54
429
+ },
430
+ {
431
+ "epoch": 0.3160919540229885,
432
+ "grad_norm": 0.041795678436756134,
433
+ "learning_rate": 0.00019999775651876987,
434
+ "loss": 0.7165,
435
+ "step": 55
436
+ },
437
+ {
438
+ "epoch": 0.3218390804597701,
439
+ "grad_norm": 0.03494727239012718,
440
+ "learning_rate": 0.00019999102617574365,
441
+ "loss": 0.7499,
442
+ "step": 56
443
+ },
444
+ {
445
+ "epoch": 0.3275862068965517,
446
+ "grad_norm": 0.033885981887578964,
447
+ "learning_rate": 0.00019997980927290927,
448
+ "loss": 0.7118,
449
+ "step": 57
450
+ },
451
+ {
452
+ "epoch": 0.3333333333333333,
453
+ "grad_norm": 0.03606434166431427,
454
+ "learning_rate": 0.00019996410631356498,
455
+ "loss": 0.6945,
456
+ "step": 58
457
+ },
458
+ {
459
+ "epoch": 0.3390804597701149,
460
+ "grad_norm": 0.04015219211578369,
461
+ "learning_rate": 0.00019994391800229666,
462
+ "loss": 0.6982,
463
+ "step": 59
464
+ },
465
+ {
466
+ "epoch": 0.3448275862068966,
467
+ "grad_norm": 0.0380714014172554,
468
+ "learning_rate": 0.00019991924524494627,
469
+ "loss": 0.6848,
470
+ "step": 60
471
+ },
472
+ {
473
+ "epoch": 0.3448275862068966,
474
+ "eval_loss": 0.7109408378601074,
475
+ "eval_runtime": 404.9798,
476
+ "eval_samples_per_second": 24.441,
477
+ "eval_steps_per_second": 0.383,
478
+ "step": 60
479
+ },
480
+ {
481
+ "epoch": 0.3505747126436782,
482
+ "grad_norm": 0.04110811650753021,
483
+ "learning_rate": 0.00019989008914857116,
484
+ "loss": 0.6899,
485
+ "step": 61
486
+ },
487
+ {
488
+ "epoch": 0.3563218390804598,
489
+ "grad_norm": 0.03853503614664078,
490
+ "learning_rate": 0.0001998564510213944,
491
+ "loss": 0.7094,
492
+ "step": 62
493
+ },
494
+ {
495
+ "epoch": 0.3620689655172414,
496
+ "grad_norm": 0.0391794852912426,
497
+ "learning_rate": 0.00019981833237274618,
498
+ "loss": 0.6975,
499
+ "step": 63
500
+ },
501
+ {
502
+ "epoch": 0.367816091954023,
503
+ "grad_norm": 0.03894927725195885,
504
+ "learning_rate": 0.00019977573491299598,
505
+ "loss": 0.714,
506
+ "step": 64
507
+ },
508
+ {
509
+ "epoch": 0.3735632183908046,
510
+ "grad_norm": 0.04239923506975174,
511
+ "learning_rate": 0.00019972866055347572,
512
+ "loss": 0.7339,
513
+ "step": 65
514
+ },
515
+ {
516
+ "epoch": 0.3793103448275862,
517
+ "grad_norm": 0.03982697054743767,
518
+ "learning_rate": 0.0001996771114063943,
519
+ "loss": 0.6821,
520
+ "step": 66
521
+ },
522
+ {
523
+ "epoch": 0.3850574712643678,
524
+ "grad_norm": 0.04431302100419998,
525
+ "learning_rate": 0.00019962108978474263,
526
+ "loss": 0.7273,
527
+ "step": 67
528
+ },
529
+ {
530
+ "epoch": 0.39080459770114945,
531
+ "grad_norm": 0.043787937611341476,
532
+ "learning_rate": 0.00019956059820218982,
533
+ "loss": 0.6984,
534
+ "step": 68
535
+ },
536
+ {
537
+ "epoch": 0.39655172413793105,
538
+ "grad_norm": 0.054389603435993195,
539
+ "learning_rate": 0.00019949563937297045,
540
+ "loss": 0.6778,
541
+ "step": 69
542
+ },
543
+ {
544
+ "epoch": 0.40229885057471265,
545
+ "grad_norm": 0.041256386786699295,
546
+ "learning_rate": 0.00019942621621176282,
547
+ "loss": 0.693,
548
+ "step": 70
549
+ },
550
+ {
551
+ "epoch": 0.40229885057471265,
552
+ "eval_loss": 0.7021871209144592,
553
+ "eval_runtime": 406.6755,
554
+ "eval_samples_per_second": 24.339,
555
+ "eval_steps_per_second": 0.381,
556
+ "step": 70
557
+ },
558
+ {
559
+ "epoch": 0.40804597701149425,
560
+ "grad_norm": 0.05022790655493736,
561
+ "learning_rate": 0.0001993523318335581,
562
+ "loss": 0.6967,
563
+ "step": 71
564
+ },
565
+ {
566
+ "epoch": 0.41379310344827586,
567
+ "grad_norm": 0.06086933612823486,
568
+ "learning_rate": 0.00019927398955352061,
569
+ "loss": 0.7279,
570
+ "step": 72
571
+ },
572
+ {
573
+ "epoch": 0.41954022988505746,
574
+ "grad_norm": 0.04689742252230644,
575
+ "learning_rate": 0.00019919119288683908,
576
+ "loss": 0.6792,
577
+ "step": 73
578
+ },
579
+ {
580
+ "epoch": 0.42528735632183906,
581
+ "grad_norm": 0.04852883517742157,
582
+ "learning_rate": 0.00019910394554856876,
583
+ "loss": 0.701,
584
+ "step": 74
585
+ },
586
+ {
587
+ "epoch": 0.43103448275862066,
588
+ "grad_norm": 0.06196567416191101,
589
+ "learning_rate": 0.0001990122514534651,
590
+ "loss": 0.6805,
591
+ "step": 75
592
+ },
593
+ {
594
+ "epoch": 0.4367816091954023,
595
+ "grad_norm": 0.047033004462718964,
596
+ "learning_rate": 0.00019891611471580764,
597
+ "loss": 0.7058,
598
+ "step": 76
599
+ },
600
+ {
601
+ "epoch": 0.4425287356321839,
602
+ "grad_norm": 0.047392234206199646,
603
+ "learning_rate": 0.00019881553964921572,
604
+ "loss": 0.6861,
605
+ "step": 77
606
+ },
607
+ {
608
+ "epoch": 0.4482758620689655,
609
+ "grad_norm": 0.054070815443992615,
610
+ "learning_rate": 0.00019871053076645488,
611
+ "loss": 0.6969,
612
+ "step": 78
613
+ },
614
+ {
615
+ "epoch": 0.4540229885057471,
616
+ "grad_norm": 0.055412329733371735,
617
+ "learning_rate": 0.00019860109277923418,
618
+ "loss": 0.7001,
619
+ "step": 79
620
+ },
621
+ {
622
+ "epoch": 0.45977011494252873,
623
+ "grad_norm": 0.05274376645684242,
624
+ "learning_rate": 0.00019848723059799506,
625
+ "loss": 0.7101,
626
+ "step": 80
627
+ },
628
+ {
629
+ "epoch": 0.45977011494252873,
630
+ "eval_loss": 0.694656252861023,
631
+ "eval_runtime": 410.9173,
632
+ "eval_samples_per_second": 24.088,
633
+ "eval_steps_per_second": 0.377,
634
+ "step": 80
635
+ },
636
+ {
637
+ "epoch": 0.46551724137931033,
638
+ "grad_norm": 0.05915577709674835,
639
+ "learning_rate": 0.00019836894933169088,
640
+ "loss": 0.6836,
641
+ "step": 81
642
+ },
643
+ {
644
+ "epoch": 0.47126436781609193,
645
+ "grad_norm": 0.051574286073446274,
646
+ "learning_rate": 0.0001982462542875576,
647
+ "loss": 0.7181,
648
+ "step": 82
649
+ },
650
+ {
651
+ "epoch": 0.47701149425287354,
652
+ "grad_norm": 0.050167519599199295,
653
+ "learning_rate": 0.00019811915097087587,
654
+ "loss": 0.6645,
655
+ "step": 83
656
+ },
657
+ {
658
+ "epoch": 0.4827586206896552,
659
+ "grad_norm": 0.06501943618059158,
660
+ "learning_rate": 0.00019798764508472373,
661
+ "loss": 0.6891,
662
+ "step": 84
663
+ },
664
+ {
665
+ "epoch": 0.4885057471264368,
666
+ "grad_norm": 0.05396122857928276,
667
+ "learning_rate": 0.00019785174252972092,
668
+ "loss": 0.6842,
669
+ "step": 85
670
+ },
671
+ {
672
+ "epoch": 0.4942528735632184,
673
+ "grad_norm": 0.051826637238264084,
674
+ "learning_rate": 0.0001977114494037641,
675
+ "loss": 0.7047,
676
+ "step": 86
677
+ },
678
+ {
679
+ "epoch": 0.5,
680
+ "grad_norm": 0.05442539602518082,
681
+ "learning_rate": 0.00019756677200175315,
682
+ "loss": 0.7261,
683
+ "step": 87
684
+ },
685
+ {
686
+ "epoch": 0.5057471264367817,
687
+ "grad_norm": 0.05559674650430679,
688
+ "learning_rate": 0.0001974177168153088,
689
+ "loss": 0.6699,
690
+ "step": 88
691
+ },
692
+ {
693
+ "epoch": 0.5114942528735632,
694
+ "grad_norm": 0.058047693222761154,
695
+ "learning_rate": 0.0001972642905324813,
696
+ "loss": 0.6831,
697
+ "step": 89
698
+ },
699
+ {
700
+ "epoch": 0.5172413793103449,
701
+ "grad_norm": 0.051893047988414764,
702
+ "learning_rate": 0.0001971065000374504,
703
+ "loss": 0.7293,
704
+ "step": 90
705
+ },
706
+ {
707
+ "epoch": 0.5172413793103449,
708
+ "eval_loss": 0.6888386607170105,
709
+ "eval_runtime": 405.4362,
710
+ "eval_samples_per_second": 24.413,
711
+ "eval_steps_per_second": 0.382,
712
+ "step": 90
713
+ },
714
+ {
715
+ "epoch": 0.5229885057471264,
716
+ "grad_norm": 0.051870737224817276,
717
+ "learning_rate": 0.0001969443524102163,
718
+ "loss": 0.6945,
719
+ "step": 91
720
+ },
721
+ {
722
+ "epoch": 0.5287356321839081,
723
+ "grad_norm": 0.04907568544149399,
724
+ "learning_rate": 0.0001967778549262822,
725
+ "loss": 0.6985,
726
+ "step": 92
727
+ },
728
+ {
729
+ "epoch": 0.5344827586206896,
730
+ "grad_norm": 0.05802120640873909,
731
+ "learning_rate": 0.00019660701505632772,
732
+ "loss": 0.6911,
733
+ "step": 93
734
+ },
735
+ {
736
+ "epoch": 0.5402298850574713,
737
+ "grad_norm": 0.06809733808040619,
738
+ "learning_rate": 0.0001964318404658737,
739
+ "loss": 0.6815,
740
+ "step": 94
741
+ },
742
+ {
743
+ "epoch": 0.5459770114942529,
744
+ "grad_norm": 0.05489501729607582,
745
+ "learning_rate": 0.00019625233901493822,
746
+ "loss": 0.6664,
747
+ "step": 95
748
+ },
749
+ {
750
+ "epoch": 0.5517241379310345,
751
+ "grad_norm": 0.0648936778306961,
752
+ "learning_rate": 0.000196068518757684,
753
+ "loss": 0.6689,
754
+ "step": 96
755
+ },
756
+ {
757
+ "epoch": 0.5574712643678161,
758
+ "grad_norm": 0.054548367857933044,
759
+ "learning_rate": 0.00019588038794205703,
760
+ "loss": 0.6695,
761
+ "step": 97
762
+ },
763
+ {
764
+ "epoch": 0.5632183908045977,
765
+ "grad_norm": 0.0626642182469368,
766
+ "learning_rate": 0.00019568795500941635,
767
+ "loss": 0.7062,
768
+ "step": 98
769
+ },
770
+ {
771
+ "epoch": 0.5689655172413793,
772
+ "grad_norm": 0.0539688840508461,
773
+ "learning_rate": 0.00019549122859415538,
774
+ "loss": 0.6891,
775
+ "step": 99
776
+ },
777
+ {
778
+ "epoch": 0.5747126436781609,
779
+ "grad_norm": 0.05761811137199402,
780
+ "learning_rate": 0.00019529021752331453,
781
+ "loss": 0.6852,
782
+ "step": 100
783
+ },
784
+ {
785
+ "epoch": 0.5747126436781609,
786
+ "eval_loss": 0.6821601986885071,
787
+ "eval_runtime": 404.287,
788
+ "eval_samples_per_second": 24.483,
789
+ "eval_steps_per_second": 0.383,
790
+ "step": 100
791
+ },
792
+ {
793
+ "epoch": 0.5804597701149425,
794
+ "grad_norm": 0.054896607995033264,
795
+ "learning_rate": 0.00019508493081618513,
796
+ "loss": 0.6785,
797
+ "step": 101
798
+ },
799
+ {
800
+ "epoch": 0.5862068965517241,
801
+ "grad_norm": 0.06048964709043503,
802
+ "learning_rate": 0.00019487537768390464,
803
+ "loss": 0.6724,
804
+ "step": 102
805
+ },
806
+ {
807
+ "epoch": 0.5919540229885057,
808
+ "grad_norm": 0.06828396022319794,
809
+ "learning_rate": 0.00019466156752904343,
810
+ "loss": 0.7117,
811
+ "step": 103
812
+ },
813
+ {
814
+ "epoch": 0.5977011494252874,
815
+ "grad_norm": 0.06610234081745148,
816
+ "learning_rate": 0.0001944435099451829,
817
+ "loss": 0.6982,
818
+ "step": 104
819
+ },
820
+ {
821
+ "epoch": 0.603448275862069,
822
+ "grad_norm": 0.06762486696243286,
823
+ "learning_rate": 0.00019422121471648497,
824
+ "loss": 0.6768,
825
+ "step": 105
826
+ },
827
+ {
828
+ "epoch": 0.6091954022988506,
829
+ "grad_norm": 0.05772867798805237,
830
+ "learning_rate": 0.0001939946918172531,
831
+ "loss": 0.7073,
832
+ "step": 106
833
+ },
834
+ {
835
+ "epoch": 0.6149425287356322,
836
+ "grad_norm": 0.11993183940649033,
837
+ "learning_rate": 0.00019376395141148476,
838
+ "loss": 0.6831,
839
+ "step": 107
840
+ },
841
+ {
842
+ "epoch": 0.6206896551724138,
843
+ "grad_norm": 0.08105713874101639,
844
+ "learning_rate": 0.00019352900385241536,
845
+ "loss": 0.6857,
846
+ "step": 108
847
+ },
848
+ {
849
+ "epoch": 0.6264367816091954,
850
+ "grad_norm": 0.06035466492176056,
851
+ "learning_rate": 0.0001932898596820536,
852
+ "loss": 0.672,
853
+ "step": 109
854
+ },
855
+ {
856
+ "epoch": 0.632183908045977,
857
+ "grad_norm": 0.09288731962442398,
858
+ "learning_rate": 0.0001930465296307087,
859
+ "loss": 0.7033,
860
+ "step": 110
861
+ },
862
+ {
863
+ "epoch": 0.632183908045977,
864
+ "eval_loss": 0.677044153213501,
865
+ "eval_runtime": 405.2323,
866
+ "eval_samples_per_second": 24.425,
867
+ "eval_steps_per_second": 0.382,
868
+ "step": 110
869
+ },
870
+ {
871
+ "epoch": 0.6379310344827587,
872
+ "grad_norm": 0.06630638986825943,
873
+ "learning_rate": 0.00019279902461650866,
874
+ "loss": 0.6831,
875
+ "step": 111
876
+ },
877
+ {
878
+ "epoch": 0.6436781609195402,
879
+ "grad_norm": 0.05605092644691467,
880
+ "learning_rate": 0.00019254735574491058,
881
+ "loss": 0.6654,
882
+ "step": 112
883
+ },
884
+ {
885
+ "epoch": 0.6494252873563219,
886
+ "grad_norm": 0.07270795851945877,
887
+ "learning_rate": 0.00019229153430820232,
888
+ "loss": 0.6744,
889
+ "step": 113
890
+ },
891
+ {
892
+ "epoch": 0.6551724137931034,
893
+ "grad_norm": 0.06772006303071976,
894
+ "learning_rate": 0.0001920315717849956,
895
+ "loss": 0.6833,
896
+ "step": 114
897
+ },
898
+ {
899
+ "epoch": 0.6609195402298851,
900
+ "grad_norm": 0.06296226382255554,
901
+ "learning_rate": 0.0001917674798397113,
902
+ "loss": 0.677,
903
+ "step": 115
904
+ },
905
+ {
906
+ "epoch": 0.6666666666666666,
907
+ "grad_norm": 0.06553810834884644,
908
+ "learning_rate": 0.00019149927032205587,
909
+ "loss": 0.6828,
910
+ "step": 116
911
+ },
912
+ {
913
+ "epoch": 0.6724137931034483,
914
+ "grad_norm": 0.057245928794145584,
915
+ "learning_rate": 0.00019122695526648968,
916
+ "loss": 0.6858,
917
+ "step": 117
918
+ },
919
+ {
920
+ "epoch": 0.6781609195402298,
921
+ "grad_norm": 0.06503669917583466,
922
+ "learning_rate": 0.00019095054689168705,
923
+ "loss": 0.6591,
924
+ "step": 118
925
+ },
926
+ {
927
+ "epoch": 0.6839080459770115,
928
+ "grad_norm": 0.05912588909268379,
929
+ "learning_rate": 0.00019067005759998797,
930
+ "loss": 0.6669,
931
+ "step": 119
932
+ },
933
+ {
934
+ "epoch": 0.6896551724137931,
935
+ "grad_norm": 0.06517963111400604,
936
+ "learning_rate": 0.0001903854999768417,
937
+ "loss": 0.6815,
938
+ "step": 120
939
+ },
940
+ {
941
+ "epoch": 0.6896551724137931,
942
+ "eval_loss": 0.6735538244247437,
943
+ "eval_runtime": 405.8319,
944
+ "eval_samples_per_second": 24.389,
945
+ "eval_steps_per_second": 0.382,
946
+ "step": 120
947
+ },
948
+ {
949
+ "epoch": 0.6954022988505747,
950
+ "grad_norm": 0.06089121848344803,
951
+ "learning_rate": 0.0001900968867902419,
952
+ "loss": 0.67,
953
+ "step": 121
954
+ },
955
+ {
956
+ "epoch": 0.7011494252873564,
957
+ "grad_norm": 0.05764375999569893,
958
+ "learning_rate": 0.00018980423099015402,
959
+ "loss": 0.6733,
960
+ "step": 122
961
+ },
962
+ {
963
+ "epoch": 0.7068965517241379,
964
+ "grad_norm": 0.06278955936431885,
965
+ "learning_rate": 0.00018950754570793384,
966
+ "loss": 0.6702,
967
+ "step": 123
968
+ },
969
+ {
970
+ "epoch": 0.7126436781609196,
971
+ "grad_norm": 0.06360521912574768,
972
+ "learning_rate": 0.00018920684425573865,
973
+ "loss": 0.6619,
974
+ "step": 124
975
+ },
976
+ {
977
+ "epoch": 0.7183908045977011,
978
+ "grad_norm": 0.0599365159869194,
979
+ "learning_rate": 0.00018890214012592975,
980
+ "loss": 0.6851,
981
+ "step": 125
982
+ },
983
+ {
984
+ "epoch": 0.7241379310344828,
985
+ "grad_norm": 0.061885766685009,
986
+ "learning_rate": 0.000188593446990467,
987
+ "loss": 0.6346,
988
+ "step": 126
989
+ },
990
+ {
991
+ "epoch": 0.7298850574712644,
992
+ "grad_norm": 0.061761509627103806,
993
+ "learning_rate": 0.00018828077870029552,
994
+ "loss": 0.6834,
995
+ "step": 127
996
+ },
997
+ {
998
+ "epoch": 0.735632183908046,
999
+ "grad_norm": 0.075982965528965,
1000
+ "learning_rate": 0.00018796414928472417,
1001
+ "loss": 0.6279,
1002
+ "step": 128
1003
+ },
1004
+ {
1005
+ "epoch": 0.7413793103448276,
1006
+ "grad_norm": 0.05802853778004646,
1007
+ "learning_rate": 0.0001876435729507959,
1008
+ "loss": 0.6348,
1009
+ "step": 129
1010
+ },
1011
+ {
1012
+ "epoch": 0.7471264367816092,
1013
+ "grad_norm": 0.06642711162567139,
1014
+ "learning_rate": 0.0001873190640826505,
1015
+ "loss": 0.679,
1016
+ "step": 130
1017
+ },
1018
+ {
1019
+ "epoch": 0.7471264367816092,
1020
+ "eval_loss": 0.6707044243812561,
1021
+ "eval_runtime": 407.4212,
1022
+ "eval_samples_per_second": 24.294,
1023
+ "eval_steps_per_second": 0.38,
1024
+ "step": 130
1025
+ },
1026
+ {
1027
+ "epoch": 0.7528735632183908,
1028
+ "grad_norm": 0.06452522426843643,
1029
+ "learning_rate": 0.00018699063724087904,
1030
+ "loss": 0.6423,
1031
+ "step": 131
1032
+ },
1033
+ {
1034
+ "epoch": 0.7586206896551724,
1035
+ "grad_norm": 0.05988775193691254,
1036
+ "learning_rate": 0.00018665830716187065,
1037
+ "loss": 0.6654,
1038
+ "step": 132
1039
+ },
1040
+ {
1041
+ "epoch": 0.764367816091954,
1042
+ "grad_norm": 0.059349820017814636,
1043
+ "learning_rate": 0.0001863220887571512,
1044
+ "loss": 0.6866,
1045
+ "step": 133
1046
+ },
1047
+ {
1048
+ "epoch": 0.7701149425287356,
1049
+ "grad_norm": 0.06473397463560104,
1050
+ "learning_rate": 0.0001859819971127143,
1051
+ "loss": 0.7014,
1052
+ "step": 134
1053
+ },
1054
+ {
1055
+ "epoch": 0.7758620689655172,
1056
+ "grad_norm": 0.06945810467004776,
1057
+ "learning_rate": 0.00018563804748834438,
1058
+ "loss": 0.6769,
1059
+ "step": 135
1060
+ },
1061
+ {
1062
+ "epoch": 0.7816091954022989,
1063
+ "grad_norm": 0.06217830255627632,
1064
+ "learning_rate": 0.000185290255316932,
1065
+ "loss": 0.6821,
1066
+ "step": 136
1067
+ },
1068
+ {
1069
+ "epoch": 0.7873563218390804,
1070
+ "grad_norm": 0.07021711021661758,
1071
+ "learning_rate": 0.00018493863620378122,
1072
+ "loss": 0.6614,
1073
+ "step": 137
1074
+ },
1075
+ {
1076
+ "epoch": 0.7931034482758621,
1077
+ "grad_norm": 0.0640297532081604,
1078
+ "learning_rate": 0.00018458320592590975,
1079
+ "loss": 0.6699,
1080
+ "step": 138
1081
+ },
1082
+ {
1083
+ "epoch": 0.7988505747126436,
1084
+ "grad_norm": 0.0640842542052269,
1085
+ "learning_rate": 0.00018422398043134067,
1086
+ "loss": 0.6795,
1087
+ "step": 139
1088
+ },
1089
+ {
1090
+ "epoch": 0.8045977011494253,
1091
+ "grad_norm": 0.07371507585048676,
1092
+ "learning_rate": 0.00018386097583838714,
1093
+ "loss": 0.6571,
1094
+ "step": 140
1095
+ },
1096
+ {
1097
+ "epoch": 0.8045977011494253,
1098
+ "eval_loss": 0.6682229042053223,
1099
+ "eval_runtime": 404.8694,
1100
+ "eval_samples_per_second": 24.447,
1101
+ "eval_steps_per_second": 0.383,
1102
+ "step": 140
1103
+ },
1104
+ {
1105
+ "epoch": 0.8103448275862069,
1106
+ "grad_norm": 0.06185011938214302,
1107
+ "learning_rate": 0.00018349420843492888,
1108
+ "loss": 0.6524,
1109
+ "step": 141
1110
+ },
1111
+ {
1112
+ "epoch": 0.8160919540229885,
1113
+ "grad_norm": 0.08427827060222626,
1114
+ "learning_rate": 0.00018312369467768166,
1115
+ "loss": 0.6685,
1116
+ "step": 142
1117
+ },
1118
+ {
1119
+ "epoch": 0.8218390804597702,
1120
+ "grad_norm": 0.06529568880796432,
1121
+ "learning_rate": 0.0001827494511914587,
1122
+ "loss": 0.659,
1123
+ "step": 143
1124
+ },
1125
+ {
1126
+ "epoch": 0.8275862068965517,
1127
+ "grad_norm": 0.07357680797576904,
1128
+ "learning_rate": 0.0001823714947684247,
1129
+ "loss": 0.6792,
1130
+ "step": 144
1131
+ },
1132
+ {
1133
+ "epoch": 0.8333333333333334,
1134
+ "grad_norm": 0.09026575833559036,
1135
+ "learning_rate": 0.00018198984236734246,
1136
+ "loss": 0.6954,
1137
+ "step": 145
1138
+ },
1139
+ {
1140
+ "epoch": 0.8390804597701149,
1141
+ "grad_norm": 0.06157710403203964,
1142
+ "learning_rate": 0.000181604511112812,
1143
+ "loss": 0.6527,
1144
+ "step": 146
1145
+ },
1146
+ {
1147
+ "epoch": 0.8448275862068966,
1148
+ "grad_norm": 0.08122924715280533,
1149
+ "learning_rate": 0.000181215518294502,
1150
+ "loss": 0.6571,
1151
+ "step": 147
1152
+ },
1153
+ {
1154
+ "epoch": 0.8505747126436781,
1155
+ "grad_norm": 0.05926045402884483,
1156
+ "learning_rate": 0.00018082288136637422,
1157
+ "loss": 0.6773,
1158
+ "step": 148
1159
+ },
1160
+ {
1161
+ "epoch": 0.8563218390804598,
1162
+ "grad_norm": 0.07869191467761993,
1163
+ "learning_rate": 0.00018042661794590023,
1164
+ "loss": 0.7066,
1165
+ "step": 149
1166
+ },
1167
+ {
1168
+ "epoch": 0.8620689655172413,
1169
+ "grad_norm": 0.07564139366149902,
1170
+ "learning_rate": 0.00018002674581327094,
1171
+ "loss": 0.6491,
1172
+ "step": 150
1173
+ },
1174
+ {
1175
+ "epoch": 0.8620689655172413,
1176
+ "eval_loss": 0.6660047769546509,
1177
+ "eval_runtime": 406.5581,
1178
+ "eval_samples_per_second": 24.346,
1179
+ "eval_steps_per_second": 0.381,
1180
+ "step": 150
1181
+ },
1182
+ {
1183
+ "epoch": 0.867816091954023,
1184
+ "grad_norm": 0.05749671533703804,
1185
+ "learning_rate": 0.00017962328291059888,
1186
+ "loss": 0.7081,
1187
+ "step": 151
1188
+ },
1189
+ {
1190
+ "epoch": 0.8735632183908046,
1191
+ "grad_norm": 0.08154609054327011,
1192
+ "learning_rate": 0.00017921624734111292,
1193
+ "loss": 0.6622,
1194
+ "step": 152
1195
+ },
1196
+ {
1197
+ "epoch": 0.8793103448275862,
1198
+ "grad_norm": 0.08773736655712128,
1199
+ "learning_rate": 0.0001788056573683464,
1200
+ "loss": 0.6393,
1201
+ "step": 153
1202
+ },
1203
+ {
1204
+ "epoch": 0.8850574712643678,
1205
+ "grad_norm": 0.06756340712308884,
1206
+ "learning_rate": 0.00017839153141531718,
1207
+ "loss": 0.6384,
1208
+ "step": 154
1209
+ },
1210
+ {
1211
+ "epoch": 0.8908045977011494,
1212
+ "grad_norm": 0.08763930201530457,
1213
+ "learning_rate": 0.00017797388806370132,
1214
+ "loss": 0.6512,
1215
+ "step": 155
1216
+ },
1217
+ {
1218
+ "epoch": 0.896551724137931,
1219
+ "grad_norm": 0.0647486001253128,
1220
+ "learning_rate": 0.00017755274605299923,
1221
+ "loss": 0.6502,
1222
+ "step": 156
1223
+ },
1224
+ {
1225
+ "epoch": 0.9022988505747126,
1226
+ "grad_norm": 0.11679747700691223,
1227
+ "learning_rate": 0.00017712812427969485,
1228
+ "loss": 0.6666,
1229
+ "step": 157
1230
+ },
1231
+ {
1232
+ "epoch": 0.9080459770114943,
1233
+ "grad_norm": 0.06472433358430862,
1234
+ "learning_rate": 0.00017670004179640774,
1235
+ "loss": 0.6495,
1236
+ "step": 158
1237
+ },
1238
+ {
1239
+ "epoch": 0.9137931034482759,
1240
+ "grad_norm": 0.09902803599834442,
1241
+ "learning_rate": 0.0001762685178110382,
1242
+ "loss": 0.6747,
1243
+ "step": 159
1244
+ },
1245
+ {
1246
+ "epoch": 0.9195402298850575,
1247
+ "grad_norm": 0.06362438946962357,
1248
+ "learning_rate": 0.0001758335716859055,
1249
+ "loss": 0.7015,
1250
+ "step": 160
1251
+ },
1252
+ {
1253
+ "epoch": 0.9195402298850575,
1254
+ "eval_loss": 0.663636326789856,
1255
+ "eval_runtime": 404.5915,
1256
+ "eval_samples_per_second": 24.464,
1257
+ "eval_steps_per_second": 0.383,
1258
+ "step": 160
1259
+ },
1260
+ {
1261
+ "epoch": 0.9252873563218391,
1262
+ "grad_norm": 0.07304941862821579,
1263
+ "learning_rate": 0.00017539522293687898,
1264
+ "loss": 0.6825,
1265
+ "step": 161
1266
+ },
1267
+ {
1268
+ "epoch": 0.9310344827586207,
1269
+ "grad_norm": 0.08923015743494034,
1270
+ "learning_rate": 0.00017495349123250242,
1271
+ "loss": 0.674,
1272
+ "step": 162
1273
+ },
1274
+ {
1275
+ "epoch": 0.9367816091954023,
1276
+ "grad_norm": 0.062135376036167145,
1277
+ "learning_rate": 0.00017450839639311162,
1278
+ "loss": 0.6477,
1279
+ "step": 163
1280
+ },
1281
+ {
1282
+ "epoch": 0.9425287356321839,
1283
+ "grad_norm": 0.1098598912358284,
1284
+ "learning_rate": 0.00017405995838994494,
1285
+ "loss": 0.6742,
1286
+ "step": 164
1287
+ },
1288
+ {
1289
+ "epoch": 0.9482758620689655,
1290
+ "grad_norm": 0.06947540491819382,
1291
+ "learning_rate": 0.00017360819734424715,
1292
+ "loss": 0.6509,
1293
+ "step": 165
1294
+ },
1295
+ {
1296
+ "epoch": 0.9540229885057471,
1297
+ "grad_norm": 0.11134368181228638,
1298
+ "learning_rate": 0.0001731531335263669,
1299
+ "loss": 0.6602,
1300
+ "step": 166
1301
+ },
1302
+ {
1303
+ "epoch": 0.9597701149425287,
1304
+ "grad_norm": 0.06717904657125473,
1305
+ "learning_rate": 0.00017269478735484683,
1306
+ "loss": 0.6697,
1307
+ "step": 167
1308
+ },
1309
+ {
1310
+ "epoch": 0.9655172413793104,
1311
+ "grad_norm": 0.06737629324197769,
1312
+ "learning_rate": 0.00017223317939550753,
1313
+ "loss": 0.6636,
1314
+ "step": 168
1315
+ },
1316
+ {
1317
+ "epoch": 0.9712643678160919,
1318
+ "grad_norm": 0.08558724075555801,
1319
+ "learning_rate": 0.00017176833036052495,
1320
+ "loss": 0.6733,
1321
+ "step": 169
1322
+ },
1323
+ {
1324
+ "epoch": 0.9770114942528736,
1325
+ "grad_norm": 0.07127804309129715,
1326
+ "learning_rate": 0.0001713002611075007,
1327
+ "loss": 0.6523,
1328
+ "step": 170
1329
+ },
1330
+ {
1331
+ "epoch": 0.9770114942528736,
1332
+ "eval_loss": 0.6618800759315491,
1333
+ "eval_runtime": 411.375,
1334
+ "eval_samples_per_second": 24.061,
1335
+ "eval_steps_per_second": 0.377,
1336
+ "step": 170
1337
+ },
1338
+ {
1339
+ "epoch": 0.9827586206896551,
1340
+ "grad_norm": 0.08060283958911896,
1341
+ "learning_rate": 0.0001708289926385265,
1342
+ "loss": 0.658,
1343
+ "step": 171
1344
+ },
1345
+ {
1346
+ "epoch": 0.9885057471264368,
1347
+ "grad_norm": 0.06496579200029373,
1348
+ "learning_rate": 0.0001703545460992416,
1349
+ "loss": 0.6697,
1350
+ "step": 172
1351
+ },
1352
+ {
1353
+ "epoch": 0.9942528735632183,
1354
+ "grad_norm": 0.0646037757396698,
1355
+ "learning_rate": 0.00016987694277788417,
1356
+ "loss": 0.6231,
1357
+ "step": 173
1358
+ },
1359
+ {
1360
+ "epoch": 1.0,
1361
+ "grad_norm": 0.08516079187393188,
1362
+ "learning_rate": 0.0001693962041043359,
1363
+ "loss": 0.6374,
1364
+ "step": 174
1365
+ },
1366
+ {
1367
+ "epoch": 1.0057471264367817,
1368
+ "grad_norm": 0.06554190069437027,
1369
+ "learning_rate": 0.00016891235164916065,
1370
+ "loss": 0.6271,
1371
+ "step": 175
1372
+ },
1373
+ {
1374
+ "epoch": 1.0114942528735633,
1375
+ "grad_norm": 0.06361629068851471,
1376
+ "learning_rate": 0.00016842540712263637,
1377
+ "loss": 0.649,
1378
+ "step": 176
1379
+ },
1380
+ {
1381
+ "epoch": 1.0172413793103448,
1382
+ "grad_norm": 0.0814083069562912,
1383
+ "learning_rate": 0.00016793539237378128,
1384
+ "loss": 0.654,
1385
+ "step": 177
1386
+ },
1387
+ {
1388
+ "epoch": 1.0229885057471264,
1389
+ "grad_norm": 0.06498701125383377,
1390
+ "learning_rate": 0.00016744232938937308,
1391
+ "loss": 0.6313,
1392
+ "step": 178
1393
+ },
1394
+ {
1395
+ "epoch": 1.028735632183908,
1396
+ "grad_norm": 0.11292543262243271,
1397
+ "learning_rate": 0.0001669462402929629,
1398
+ "loss": 0.6803,
1399
+ "step": 179
1400
+ },
1401
+ {
1402
+ "epoch": 1.0344827586206897,
1403
+ "grad_norm": 0.0661187544465065,
1404
+ "learning_rate": 0.00016644714734388217,
1405
+ "loss": 0.6672,
1406
+ "step": 180
1407
+ },
1408
+ {
1409
+ "epoch": 1.0344827586206897,
1410
+ "eval_loss": 0.6602174043655396,
1411
+ "eval_runtime": 410.2914,
1412
+ "eval_samples_per_second": 24.124,
1413
+ "eval_steps_per_second": 0.378,
1414
+ "step": 180
1415
+ },
1416
+ {
1417
+ "epoch": 1.0402298850574712,
1418
+ "grad_norm": 0.08441785722970963,
1419
+ "learning_rate": 0.00016594507293624425,
1420
+ "loss": 0.6257,
1421
+ "step": 181
1422
+ },
1423
+ {
1424
+ "epoch": 1.0459770114942528,
1425
+ "grad_norm": 0.09075969457626343,
1426
+ "learning_rate": 0.00016544003959793925,
1427
+ "loss": 0.641,
1428
+ "step": 182
1429
+ },
1430
+ {
1431
+ "epoch": 1.0517241379310345,
1432
+ "grad_norm": 0.07677901536226273,
1433
+ "learning_rate": 0.00016493206998962354,
1434
+ "loss": 0.6351,
1435
+ "step": 183
1436
+ },
1437
+ {
1438
+ "epoch": 1.0574712643678161,
1439
+ "grad_norm": 0.09646302461624146,
1440
+ "learning_rate": 0.0001644211869037027,
1441
+ "loss": 0.6635,
1442
+ "step": 184
1443
+ },
1444
+ {
1445
+ "epoch": 1.0632183908045978,
1446
+ "grad_norm": 0.06928115338087082,
1447
+ "learning_rate": 0.00016390741326330907,
1448
+ "loss": 0.6458,
1449
+ "step": 185
1450
+ },
1451
+ {
1452
+ "epoch": 1.0689655172413792,
1453
+ "grad_norm": 0.1076992079615593,
1454
+ "learning_rate": 0.00016339077212127294,
1455
+ "loss": 0.6209,
1456
+ "step": 186
1457
+ },
1458
+ {
1459
+ "epoch": 1.0747126436781609,
1460
+ "grad_norm": 0.08489565551280975,
1461
+ "learning_rate": 0.0001628712866590885,
1462
+ "loss": 0.6336,
1463
+ "step": 187
1464
+ },
1465
+ {
1466
+ "epoch": 1.0804597701149425,
1467
+ "grad_norm": 0.11920158565044403,
1468
+ "learning_rate": 0.00016234898018587337,
1469
+ "loss": 0.6496,
1470
+ "step": 188
1471
+ },
1472
+ {
1473
+ "epoch": 1.0862068965517242,
1474
+ "grad_norm": 0.07987701892852783,
1475
+ "learning_rate": 0.00016182387613732291,
1476
+ "loss": 0.668,
1477
+ "step": 189
1478
+ },
1479
+ {
1480
+ "epoch": 1.0919540229885056,
1481
+ "grad_norm": 0.1095438227057457,
1482
+ "learning_rate": 0.00016129599807465875,
1483
+ "loss": 0.6862,
1484
+ "step": 190
1485
+ },
1486
+ {
1487
+ "epoch": 1.0919540229885056,
1488
+ "eval_loss": 0.6588147282600403,
1489
+ "eval_runtime": 406.5115,
1490
+ "eval_samples_per_second": 24.349,
1491
+ "eval_steps_per_second": 0.381,
1492
+ "step": 190
1493
+ },
1494
+ {
1495
+ "epoch": 1.0977011494252873,
1496
+ "grad_norm": 0.08076825737953186,
1497
+ "learning_rate": 0.0001607653696835713,
1498
+ "loss": 0.6367,
1499
+ "step": 191
1500
+ },
1501
+ {
1502
+ "epoch": 1.103448275862069,
1503
+ "grad_norm": 0.09829648584127426,
1504
+ "learning_rate": 0.00016023201477315731,
1505
+ "loss": 0.6391,
1506
+ "step": 192
1507
+ },
1508
+ {
1509
+ "epoch": 1.1091954022988506,
1510
+ "grad_norm": 0.09008080512285233,
1511
+ "learning_rate": 0.0001596959572748514,
1512
+ "loss": 0.6462,
1513
+ "step": 193
1514
+ },
1515
+ {
1516
+ "epoch": 1.1149425287356323,
1517
+ "grad_norm": 0.07725552469491959,
1518
+ "learning_rate": 0.00015915722124135227,
1519
+ "loss": 0.6356,
1520
+ "step": 194
1521
+ },
1522
+ {
1523
+ "epoch": 1.1206896551724137,
1524
+ "grad_norm": 0.08215273171663284,
1525
+ "learning_rate": 0.00015861583084554349,
1526
+ "loss": 0.6557,
1527
+ "step": 195
1528
+ },
1529
+ {
1530
+ "epoch": 1.1264367816091954,
1531
+ "grad_norm": 0.07044622302055359,
1532
+ "learning_rate": 0.0001580718103794089,
1533
+ "loss": 0.6401,
1534
+ "step": 196
1535
+ },
1536
+ {
1537
+ "epoch": 1.132183908045977,
1538
+ "grad_norm": 0.06852877885103226,
1539
+ "learning_rate": 0.00015752518425294257,
1540
+ "loss": 0.6641,
1541
+ "step": 197
1542
+ },
1543
+ {
1544
+ "epoch": 1.1379310344827587,
1545
+ "grad_norm": 0.07775932550430298,
1546
+ "learning_rate": 0.00015697597699305366,
1547
+ "loss": 0.6689,
1548
+ "step": 198
1549
+ },
1550
+ {
1551
+ "epoch": 1.1436781609195403,
1552
+ "grad_norm": 0.07384389638900757,
1553
+ "learning_rate": 0.00015642421324246568,
1554
+ "loss": 0.663,
1555
+ "step": 199
1556
+ },
1557
+ {
1558
+ "epoch": 1.1494252873563218,
1559
+ "grad_norm": 0.074593685567379,
1560
+ "learning_rate": 0.00015586991775861102,
1561
+ "loss": 0.6755,
1562
+ "step": 200
1563
+ },
1564
+ {
1565
+ "epoch": 1.1494252873563218,
1566
+ "eval_loss": 0.6577329635620117,
1567
+ "eval_runtime": 406.5534,
1568
+ "eval_samples_per_second": 24.346,
1569
+ "eval_steps_per_second": 0.381,
1570
+ "step": 200
1571
+ },
1572
+ {
1573
+ "epoch": 1.1551724137931034,
1574
+ "grad_norm": 0.07201389968395233,
1575
+ "learning_rate": 0.00015531311541251995,
1576
+ "loss": 0.62,
1577
+ "step": 201
1578
+ },
1579
+ {
1580
+ "epoch": 1.160919540229885,
1581
+ "grad_norm": 0.07052464783191681,
1582
+ "learning_rate": 0.00015475383118770472,
1583
+ "loss": 0.6456,
1584
+ "step": 202
1585
+ },
1586
+ {
1587
+ "epoch": 1.1666666666666667,
1588
+ "grad_norm": 0.07045558094978333,
1589
+ "learning_rate": 0.00015419209017903852,
1590
+ "loss": 0.6421,
1591
+ "step": 203
1592
+ },
1593
+ {
1594
+ "epoch": 1.1724137931034484,
1595
+ "grad_norm": 0.0870729386806488,
1596
+ "learning_rate": 0.0001536279175916296,
1597
+ "loss": 0.6342,
1598
+ "step": 204
1599
+ },
1600
+ {
1601
+ "epoch": 1.1781609195402298,
1602
+ "grad_norm": 0.0703926831483841,
1603
+ "learning_rate": 0.0001530613387396901,
1604
+ "loss": 0.6533,
1605
+ "step": 205
1606
+ },
1607
+ {
1608
+ "epoch": 1.1839080459770115,
1609
+ "grad_norm": 0.07181324064731598,
1610
+ "learning_rate": 0.0001524923790454004,
1611
+ "loss": 0.6511,
1612
+ "step": 206
1613
+ },
1614
+ {
1615
+ "epoch": 1.1896551724137931,
1616
+ "grad_norm": 0.07455940544605255,
1617
+ "learning_rate": 0.00015192106403776848,
1618
+ "loss": 0.6363,
1619
+ "step": 207
1620
+ },
1621
+ {
1622
+ "epoch": 1.1954022988505748,
1623
+ "grad_norm": 0.08370154350996017,
1624
+ "learning_rate": 0.0001513474193514842,
1625
+ "loss": 0.6517,
1626
+ "step": 208
1627
+ },
1628
+ {
1629
+ "epoch": 1.2011494252873562,
1630
+ "grad_norm": 0.08015818893909454,
1631
+ "learning_rate": 0.00015077147072576933,
1632
+ "loss": 0.6264,
1633
+ "step": 209
1634
+ },
1635
+ {
1636
+ "epoch": 1.206896551724138,
1637
+ "grad_norm": 0.093206986784935,
1638
+ "learning_rate": 0.00015019324400322243,
1639
+ "loss": 0.6279,
1640
+ "step": 210
1641
+ },
1642
+ {
1643
+ "epoch": 1.206896551724138,
1644
+ "eval_loss": 0.6562607884407043,
1645
+ "eval_runtime": 407.9222,
1646
+ "eval_samples_per_second": 24.264,
1647
+ "eval_steps_per_second": 0.38,
1648
+ "step": 210
1649
+ },
1650
+ {
1651
+ "epoch": 1.2126436781609196,
1652
+ "grad_norm": 0.07707002758979797,
1653
+ "learning_rate": 0.00014961276512865954,
1654
+ "loss": 0.6726,
1655
+ "step": 211
1656
+ },
1657
+ {
1658
+ "epoch": 1.2183908045977012,
1659
+ "grad_norm": 0.08275868743658066,
1660
+ "learning_rate": 0.00014903006014794983,
1661
+ "loss": 0.6493,
1662
+ "step": 212
1663
+ },
1664
+ {
1665
+ "epoch": 1.2241379310344827,
1666
+ "grad_norm": 0.11222587525844574,
1667
+ "learning_rate": 0.00014844515520684703,
1668
+ "loss": 0.6367,
1669
+ "step": 213
1670
+ },
1671
+ {
1672
+ "epoch": 1.2298850574712643,
1673
+ "grad_norm": 0.09210342168807983,
1674
+ "learning_rate": 0.00014785807654981627,
1675
+ "loss": 0.6734,
1676
+ "step": 214
1677
+ },
1678
+ {
1679
+ "epoch": 1.235632183908046,
1680
+ "grad_norm": 0.08821109682321548,
1681
+ "learning_rate": 0.00014726885051885653,
1682
+ "loss": 0.6354,
1683
+ "step": 215
1684
+ },
1685
+ {
1686
+ "epoch": 1.2413793103448276,
1687
+ "grad_norm": 0.12253956496715546,
1688
+ "learning_rate": 0.0001466775035523186,
1689
+ "loss": 0.6412,
1690
+ "step": 216
1691
+ },
1692
+ {
1693
+ "epoch": 1.2471264367816093,
1694
+ "grad_norm": 0.08476684242486954,
1695
+ "learning_rate": 0.00014608406218371894,
1696
+ "loss": 0.6635,
1697
+ "step": 217
1698
+ },
1699
+ {
1700
+ "epoch": 1.2528735632183907,
1701
+ "grad_norm": 0.08554086089134216,
1702
+ "learning_rate": 0.00014548855304054886,
1703
+ "loss": 0.6403,
1704
+ "step": 218
1705
+ },
1706
+ {
1707
+ "epoch": 1.2586206896551724,
1708
+ "grad_norm": 0.10986476391553879,
1709
+ "learning_rate": 0.00014489100284308017,
1710
+ "loss": 0.6253,
1711
+ "step": 219
1712
+ },
1713
+ {
1714
+ "epoch": 1.264367816091954,
1715
+ "grad_norm": 0.09221742302179337,
1716
+ "learning_rate": 0.00014429143840316585,
1717
+ "loss": 0.6622,
1718
+ "step": 220
1719
+ },
1720
+ {
1721
+ "epoch": 1.264367816091954,
1722
+ "eval_loss": 0.6551185250282288,
1723
+ "eval_runtime": 408.2025,
1724
+ "eval_samples_per_second": 24.248,
1725
+ "eval_steps_per_second": 0.38,
1726
+ "step": 220
1727
+ },
1728
+ {
1729
+ "epoch": 1.2701149425287357,
1730
+ "grad_norm": 0.08050013333559036,
1731
+ "learning_rate": 0.00014368988662303732,
1732
+ "loss": 0.6226,
1733
+ "step": 221
1734
+ },
1735
+ {
1736
+ "epoch": 1.2758620689655173,
1737
+ "grad_norm": 0.16257594525814056,
1738
+ "learning_rate": 0.00014308637449409706,
1739
+ "loss": 0.6661,
1740
+ "step": 222
1741
+ },
1742
+ {
1743
+ "epoch": 1.2816091954022988,
1744
+ "grad_norm": 0.07793809473514557,
1745
+ "learning_rate": 0.00014248092909570774,
1746
+ "loss": 0.6243,
1747
+ "step": 223
1748
+ },
1749
+ {
1750
+ "epoch": 1.2873563218390804,
1751
+ "grad_norm": 0.0975632593035698,
1752
+ "learning_rate": 0.00014187357759397714,
1753
+ "loss": 0.6348,
1754
+ "step": 224
1755
+ },
1756
+ {
1757
+ "epoch": 1.293103448275862,
1758
+ "grad_norm": 0.07041144371032715,
1759
+ "learning_rate": 0.00014126434724053913,
1760
+ "loss": 0.6386,
1761
+ "step": 225
1762
+ },
1763
+ {
1764
+ "epoch": 1.2988505747126438,
1765
+ "grad_norm": 0.12080610543489456,
1766
+ "learning_rate": 0.00014065326537133094,
1767
+ "loss": 0.6276,
1768
+ "step": 226
1769
+ },
1770
+ {
1771
+ "epoch": 1.3045977011494254,
1772
+ "grad_norm": 0.09340126812458038,
1773
+ "learning_rate": 0.0001400403594053667,
1774
+ "loss": 0.6431,
1775
+ "step": 227
1776
+ },
1777
+ {
1778
+ "epoch": 1.3103448275862069,
1779
+ "grad_norm": 0.09178619831800461,
1780
+ "learning_rate": 0.00013942565684350698,
1781
+ "loss": 0.6457,
1782
+ "step": 228
1783
+ },
1784
+ {
1785
+ "epoch": 1.3160919540229885,
1786
+ "grad_norm": 0.134804829955101,
1787
+ "learning_rate": 0.00013880918526722497,
1788
+ "loss": 0.6247,
1789
+ "step": 229
1790
+ },
1791
+ {
1792
+ "epoch": 1.3218390804597702,
1793
+ "grad_norm": 0.07517404854297638,
1794
+ "learning_rate": 0.00013819097233736888,
1795
+ "loss": 0.6329,
1796
+ "step": 230
1797
+ },
1798
+ {
1799
+ "epoch": 1.3218390804597702,
1800
+ "eval_loss": 0.6541800498962402,
1801
+ "eval_runtime": 404.9523,
1802
+ "eval_samples_per_second": 24.442,
1803
+ "eval_steps_per_second": 0.383,
1804
+ "step": 230
1805
+ },
1806
+ {
1807
+ "epoch": 1.3275862068965516,
1808
+ "grad_norm": 0.1385478675365448,
1809
+ "learning_rate": 0.00013757104579292082,
1810
+ "loss": 0.6697,
1811
+ "step": 231
1812
+ },
1813
+ {
1814
+ "epoch": 1.3333333333333333,
1815
+ "grad_norm": 0.08156240731477737,
1816
+ "learning_rate": 0.00013694943344975212,
1817
+ "loss": 0.6279,
1818
+ "step": 232
1819
+ },
1820
+ {
1821
+ "epoch": 1.339080459770115,
1822
+ "grad_norm": 0.10937108844518661,
1823
+ "learning_rate": 0.00013632616319937522,
1824
+ "loss": 0.6487,
1825
+ "step": 233
1826
+ },
1827
+ {
1828
+ "epoch": 1.3448275862068966,
1829
+ "grad_norm": 0.12300366908311844,
1830
+ "learning_rate": 0.00013570126300769232,
1831
+ "loss": 0.6456,
1832
+ "step": 234
1833
+ },
1834
+ {
1835
+ "epoch": 1.3505747126436782,
1836
+ "grad_norm": 0.07707128673791885,
1837
+ "learning_rate": 0.0001350747609137404,
1838
+ "loss": 0.6302,
1839
+ "step": 235
1840
+ },
1841
+ {
1842
+ "epoch": 1.3563218390804597,
1843
+ "grad_norm": 0.0954674631357193,
1844
+ "learning_rate": 0.0001344466850284333,
1845
+ "loss": 0.6184,
1846
+ "step": 236
1847
+ },
1848
+ {
1849
+ "epoch": 1.3620689655172413,
1850
+ "grad_norm": 0.10317125916481018,
1851
+ "learning_rate": 0.00013381706353330014,
1852
+ "loss": 0.6618,
1853
+ "step": 237
1854
+ },
1855
+ {
1856
+ "epoch": 1.367816091954023,
1857
+ "grad_norm": 0.08765599131584167,
1858
+ "learning_rate": 0.0001331859246792211,
1859
+ "loss": 0.6191,
1860
+ "step": 238
1861
+ },
1862
+ {
1863
+ "epoch": 1.3735632183908046,
1864
+ "grad_norm": 0.10305018723011017,
1865
+ "learning_rate": 0.0001325532967851596,
1866
+ "loss": 0.6397,
1867
+ "step": 239
1868
+ },
1869
+ {
1870
+ "epoch": 1.3793103448275863,
1871
+ "grad_norm": 0.08769567310810089,
1872
+ "learning_rate": 0.00013191920823689177,
1873
+ "loss": 0.6559,
1874
+ "step": 240
1875
+ },
1876
+ {
1877
+ "epoch": 1.3793103448275863,
1878
+ "eval_loss": 0.6528159379959106,
1879
+ "eval_runtime": 407.607,
1880
+ "eval_samples_per_second": 24.283,
1881
+ "eval_steps_per_second": 0.38,
1882
+ "step": 240
1883
+ },
1884
+ {
1885
+ "epoch": 1.3850574712643677,
1886
+ "grad_norm": 0.09783841669559479,
1887
+ "learning_rate": 0.00013128368748573273,
1888
+ "loss": 0.6736,
1889
+ "step": 241
1890
+ },
1891
+ {
1892
+ "epoch": 1.3908045977011494,
1893
+ "grad_norm": 0.08165410906076431,
1894
+ "learning_rate": 0.00013064676304726,
1895
+ "loss": 0.6467,
1896
+ "step": 242
1897
+ },
1898
+ {
1899
+ "epoch": 1.396551724137931,
1900
+ "grad_norm": 0.10928885638713837,
1901
+ "learning_rate": 0.0001300084635000341,
1902
+ "loss": 0.6956,
1903
+ "step": 243
1904
+ },
1905
+ {
1906
+ "epoch": 1.4022988505747127,
1907
+ "grad_norm": 0.09388460218906403,
1908
+ "learning_rate": 0.000129368817484316,
1909
+ "loss": 0.6474,
1910
+ "step": 244
1911
+ },
1912
+ {
1913
+ "epoch": 1.4080459770114944,
1914
+ "grad_norm": 0.08257792145013809,
1915
+ "learning_rate": 0.0001287278537007824,
1916
+ "loss": 0.6301,
1917
+ "step": 245
1918
+ },
1919
+ {
1920
+ "epoch": 1.4137931034482758,
1921
+ "grad_norm": 0.07570406794548035,
1922
+ "learning_rate": 0.00012808560090923758,
1923
+ "loss": 0.6238,
1924
+ "step": 246
1925
+ },
1926
+ {
1927
+ "epoch": 1.4195402298850575,
1928
+ "grad_norm": 0.097509004175663,
1929
+ "learning_rate": 0.00012744208792732324,
1930
+ "loss": 0.6383,
1931
+ "step": 247
1932
+ },
1933
+ {
1934
+ "epoch": 1.4252873563218391,
1935
+ "grad_norm": 0.07778667658567429,
1936
+ "learning_rate": 0.00012679734362922528,
1937
+ "loss": 0.642,
1938
+ "step": 248
1939
+ },
1940
+ {
1941
+ "epoch": 1.4310344827586206,
1942
+ "grad_norm": 0.08389262855052948,
1943
+ "learning_rate": 0.00012615139694437835,
1944
+ "loss": 0.6152,
1945
+ "step": 249
1946
+ },
1947
+ {
1948
+ "epoch": 1.4367816091954024,
1949
+ "grad_norm": 0.08290071040391922,
1950
+ "learning_rate": 0.00012550427685616765,
1951
+ "loss": 0.6389,
1952
+ "step": 250
1953
+ },
1954
+ {
1955
+ "epoch": 1.4367816091954024,
1956
+ "eval_loss": 0.6516815423965454,
1957
+ "eval_runtime": 411.2719,
1958
+ "eval_samples_per_second": 24.067,
1959
+ "eval_steps_per_second": 0.377,
1960
+ "step": 250
1961
+ },
1962
+ {
1963
+ "epoch": 1.4425287356321839,
1964
+ "grad_norm": 0.08134254068136215,
1965
+ "learning_rate": 0.00012485601240062869,
1966
+ "loss": 0.6365,
1967
+ "step": 251
1968
+ },
1969
+ {
1970
+ "epoch": 1.4482758620689655,
1971
+ "grad_norm": 0.11836981773376465,
1972
+ "learning_rate": 0.00012420663266514417,
1973
+ "loss": 0.6345,
1974
+ "step": 252
1975
+ },
1976
+ {
1977
+ "epoch": 1.4540229885057472,
1978
+ "grad_norm": 0.07629366219043732,
1979
+ "learning_rate": 0.0001235561667871391,
1980
+ "loss": 0.6365,
1981
+ "step": 253
1982
+ },
1983
+ {
1984
+ "epoch": 1.4597701149425286,
1985
+ "grad_norm": 0.09142953902482986,
1986
+ "learning_rate": 0.0001229046439527732,
1987
+ "loss": 0.6316,
1988
+ "step": 254
1989
+ },
1990
+ {
1991
+ "epoch": 1.4655172413793103,
1992
+ "grad_norm": 0.12063657492399216,
1993
+ "learning_rate": 0.00012225209339563145,
1994
+ "loss": 0.6221,
1995
+ "step": 255
1996
+ },
1997
+ {
1998
+ "epoch": 1.471264367816092,
1999
+ "grad_norm": 0.07524894177913666,
2000
+ "learning_rate": 0.00012159854439541245,
2001
+ "loss": 0.6485,
2002
+ "step": 256
2003
+ },
2004
+ {
2005
+ "epoch": 1.4770114942528736,
2006
+ "grad_norm": 0.08384133875370026,
2007
+ "learning_rate": 0.00012094402627661447,
2008
+ "loss": 0.6607,
2009
+ "step": 257
2010
+ },
2011
+ {
2012
+ "epoch": 1.4827586206896552,
2013
+ "grad_norm": 0.08039575815200806,
2014
+ "learning_rate": 0.00012028856840721974,
2015
+ "loss": 0.6764,
2016
+ "step": 258
2017
+ },
2018
+ {
2019
+ "epoch": 1.4885057471264367,
2020
+ "grad_norm": 0.09115740656852722,
2021
+ "learning_rate": 0.00011963220019737691,
2022
+ "loss": 0.6587,
2023
+ "step": 259
2024
+ },
2025
+ {
2026
+ "epoch": 1.4942528735632183,
2027
+ "grad_norm": 0.08291927725076675,
2028
+ "learning_rate": 0.00011897495109808107,
2029
+ "loss": 0.6476,
2030
+ "step": 260
2031
+ },
2032
+ {
2033
+ "epoch": 1.4942528735632183,
2034
+ "eval_loss": 0.6506026983261108,
2035
+ "eval_runtime": 407.6949,
2036
+ "eval_samples_per_second": 24.278,
2037
+ "eval_steps_per_second": 0.38,
2038
+ "step": 260
2039
+ },
2040
+ {
2041
+ "epoch": 1.5,
2042
+ "grad_norm": 0.09679999202489853,
2043
+ "learning_rate": 0.00011831685059985262,
2044
+ "loss": 0.6378,
2045
+ "step": 261
2046
+ },
2047
+ {
2048
+ "epoch": 1.5057471264367817,
2049
+ "grad_norm": 0.07858405262231827,
2050
+ "learning_rate": 0.00011765792823141384,
2051
+ "loss": 0.6679,
2052
+ "step": 262
2053
+ },
2054
+ {
2055
+ "epoch": 1.5114942528735633,
2056
+ "grad_norm": 0.07274090498685837,
2057
+ "learning_rate": 0.00011699821355836409,
2058
+ "loss": 0.6199,
2059
+ "step": 263
2060
+ },
2061
+ {
2062
+ "epoch": 1.5172413793103448,
2063
+ "grad_norm": 0.11862179636955261,
2064
+ "learning_rate": 0.00011633773618185302,
2065
+ "loss": 0.6369,
2066
+ "step": 264
2067
+ },
2068
+ {
2069
+ "epoch": 1.5229885057471264,
2070
+ "grad_norm": 0.08915189653635025,
2071
+ "learning_rate": 0.00011567652573725262,
2072
+ "loss": 0.6248,
2073
+ "step": 265
2074
+ },
2075
+ {
2076
+ "epoch": 1.528735632183908,
2077
+ "grad_norm": 0.12184260040521622,
2078
+ "learning_rate": 0.00011501461189282733,
2079
+ "loss": 0.645,
2080
+ "step": 266
2081
+ },
2082
+ {
2083
+ "epoch": 1.5344827586206895,
2084
+ "grad_norm": 0.09939936548471451,
2085
+ "learning_rate": 0.00011435202434840287,
2086
+ "loss": 0.6382,
2087
+ "step": 267
2088
+ },
2089
+ {
2090
+ "epoch": 1.5402298850574714,
2091
+ "grad_norm": 0.07167995721101761,
2092
+ "learning_rate": 0.0001136887928340336,
2093
+ "loss": 0.6064,
2094
+ "step": 268
2095
+ },
2096
+ {
2097
+ "epoch": 1.5459770114942528,
2098
+ "grad_norm": 0.09978017210960388,
2099
+ "learning_rate": 0.00011302494710866857,
2100
+ "loss": 0.6467,
2101
+ "step": 269
2102
+ },
2103
+ {
2104
+ "epoch": 1.5517241379310345,
2105
+ "grad_norm": 0.09598653763532639,
2106
+ "learning_rate": 0.00011236051695881633,
2107
+ "loss": 0.6412,
2108
+ "step": 270
2109
+ },
2110
+ {
2111
+ "epoch": 1.5517241379310345,
2112
+ "eval_loss": 0.6497076749801636,
2113
+ "eval_runtime": 407.5672,
2114
+ "eval_samples_per_second": 24.286,
2115
+ "eval_steps_per_second": 0.38,
2116
+ "step": 270
2117
+ },
2118
+ {
2119
+ "epoch": 1.5574712643678161,
2120
+ "grad_norm": 0.08118661493062973,
2121
+ "learning_rate": 0.00011169553219720828,
2122
+ "loss": 0.6659,
2123
+ "step": 271
2124
+ },
2125
+ {
2126
+ "epoch": 1.5632183908045976,
2127
+ "grad_norm": 0.11158329248428345,
2128
+ "learning_rate": 0.00011103002266146096,
2129
+ "loss": 0.6578,
2130
+ "step": 272
2131
+ },
2132
+ {
2133
+ "epoch": 1.5689655172413794,
2134
+ "grad_norm": 0.12230509519577026,
2135
+ "learning_rate": 0.0001103640182127375,
2136
+ "loss": 0.6187,
2137
+ "step": 273
2138
+ },
2139
+ {
2140
+ "epoch": 1.5747126436781609,
2141
+ "grad_norm": 0.07973505556583405,
2142
+ "learning_rate": 0.00010969754873440743,
2143
+ "loss": 0.6507,
2144
+ "step": 274
2145
+ },
2146
+ {
2147
+ "epoch": 1.5804597701149425,
2148
+ "grad_norm": 0.07436943054199219,
2149
+ "learning_rate": 0.00010903064413070612,
2150
+ "loss": 0.6381,
2151
+ "step": 275
2152
+ },
2153
+ {
2154
+ "epoch": 1.5862068965517242,
2155
+ "grad_norm": 0.0804380401968956,
2156
+ "learning_rate": 0.00010836333432539272,
2157
+ "loss": 0.6302,
2158
+ "step": 276
2159
+ },
2160
+ {
2161
+ "epoch": 1.5919540229885056,
2162
+ "grad_norm": 0.07640023529529572,
2163
+ "learning_rate": 0.00010769564926040769,
2164
+ "loss": 0.618,
2165
+ "step": 277
2166
+ },
2167
+ {
2168
+ "epoch": 1.5977011494252875,
2169
+ "grad_norm": 0.0787947028875351,
2170
+ "learning_rate": 0.0001070276188945293,
2171
+ "loss": 0.6308,
2172
+ "step": 278
2173
+ },
2174
+ {
2175
+ "epoch": 1.603448275862069,
2176
+ "grad_norm": 0.08764500916004181,
2177
+ "learning_rate": 0.00010635927320202928,
2178
+ "loss": 0.6316,
2179
+ "step": 279
2180
+ },
2181
+ {
2182
+ "epoch": 1.6091954022988506,
2183
+ "grad_norm": 0.07885821908712387,
2184
+ "learning_rate": 0.00010569064217132791,
2185
+ "loss": 0.6232,
2186
+ "step": 280
2187
+ },
2188
+ {
2189
+ "epoch": 1.6091954022988506,
2190
+ "eval_loss": 0.6484516859054565,
2191
+ "eval_runtime": 406.5349,
2192
+ "eval_samples_per_second": 24.347,
2193
+ "eval_steps_per_second": 0.381,
2194
+ "step": 280
2195
+ },
2196
+ {
2197
+ "epoch": 1.6149425287356323,
2198
+ "grad_norm": 0.08910427987575531,
2199
+ "learning_rate": 0.00010502175580364857,
2200
+ "loss": 0.6207,
2201
+ "step": 281
2202
+ },
2203
+ {
2204
+ "epoch": 1.6206896551724137,
2205
+ "grad_norm": 0.08195802569389343,
2206
+ "learning_rate": 0.00010435264411167148,
2207
+ "loss": 0.6604,
2208
+ "step": 282
2209
+ },
2210
+ {
2211
+ "epoch": 1.6264367816091954,
2212
+ "grad_norm": 0.09276524186134338,
2213
+ "learning_rate": 0.0001036833371181871,
2214
+ "loss": 0.6444,
2215
+ "step": 283
2216
+ },
2217
+ {
2218
+ "epoch": 1.632183908045977,
2219
+ "grad_norm": 0.07577691972255707,
2220
+ "learning_rate": 0.00010301386485474889,
2221
+ "loss": 0.6439,
2222
+ "step": 284
2223
+ },
2224
+ {
2225
+ "epoch": 1.6379310344827587,
2226
+ "grad_norm": 0.07871613651514053,
2227
+ "learning_rate": 0.00010234425736032607,
2228
+ "loss": 0.639,
2229
+ "step": 285
2230
+ },
2231
+ {
2232
+ "epoch": 1.6436781609195403,
2233
+ "grad_norm": 0.07570876181125641,
2234
+ "learning_rate": 0.00010167454467995549,
2235
+ "loss": 0.6056,
2236
+ "step": 286
2237
+ },
2238
+ {
2239
+ "epoch": 1.6494252873563218,
2240
+ "grad_norm": 0.09836837649345398,
2241
+ "learning_rate": 0.00010100475686339379,
2242
+ "loss": 0.6341,
2243
+ "step": 287
2244
+ },
2245
+ {
2246
+ "epoch": 1.6551724137931034,
2247
+ "grad_norm": 0.08796896785497665,
2248
+ "learning_rate": 0.00010033492396376878,
2249
+ "loss": 0.6193,
2250
+ "step": 288
2251
+ },
2252
+ {
2253
+ "epoch": 1.660919540229885,
2254
+ "grad_norm": 0.07815764099359512,
2255
+ "learning_rate": 9.966507603623125e-05,
2256
+ "loss": 0.6227,
2257
+ "step": 289
2258
+ },
2259
+ {
2260
+ "epoch": 1.6666666666666665,
2261
+ "grad_norm": 0.13016292452812195,
2262
+ "learning_rate": 9.899524313660624e-05,
2263
+ "loss": 0.6243,
2264
+ "step": 290
2265
+ },
2266
+ {
2267
+ "epoch": 1.6666666666666665,
2268
+ "eval_loss": 0.6477526426315308,
2269
+ "eval_runtime": 405.0855,
2270
+ "eval_samples_per_second": 24.434,
2271
+ "eval_steps_per_second": 0.383,
2272
+ "step": 290
2273
+ },
2274
+ {
2275
+ "epoch": 1.6724137931034484,
2276
+ "grad_norm": 0.09747885912656784,
2277
+ "learning_rate": 9.832545532004454e-05,
2278
+ "loss": 0.6328,
2279
+ "step": 291
2280
+ },
2281
+ {
2282
+ "epoch": 1.6781609195402298,
2283
+ "grad_norm": 0.10131366550922394,
2284
+ "learning_rate": 9.765574263967396e-05,
2285
+ "loss": 0.6212,
2286
+ "step": 292
2287
+ },
2288
+ {
2289
+ "epoch": 1.6839080459770115,
2290
+ "grad_norm": 0.1203976571559906,
2291
+ "learning_rate": 9.698613514525116e-05,
2292
+ "loss": 0.6563,
2293
+ "step": 293
2294
+ },
2295
+ {
2296
+ "epoch": 1.6896551724137931,
2297
+ "grad_norm": 0.07119957357645035,
2298
+ "learning_rate": 9.631666288181293e-05,
2299
+ "loss": 0.6278,
2300
+ "step": 294
2301
+ },
2302
+ {
2303
+ "epoch": 1.6954022988505746,
2304
+ "grad_norm": 0.11370845884084702,
2305
+ "learning_rate": 9.564735588832856e-05,
2306
+ "loss": 0.6376,
2307
+ "step": 295
2308
+ },
2309
+ {
2310
+ "epoch": 1.7011494252873565,
2311
+ "grad_norm": 0.07851264625787735,
2312
+ "learning_rate": 9.497824419635144e-05,
2313
+ "loss": 0.6149,
2314
+ "step": 296
2315
+ },
2316
+ {
2317
+ "epoch": 1.706896551724138,
2318
+ "grad_norm": 0.0818655788898468,
2319
+ "learning_rate": 9.430935782867212e-05,
2320
+ "loss": 0.6048,
2321
+ "step": 297
2322
+ },
2323
+ {
2324
+ "epoch": 1.7126436781609196,
2325
+ "grad_norm": 0.07335007190704346,
2326
+ "learning_rate": 9.364072679797073e-05,
2327
+ "loss": 0.6292,
2328
+ "step": 298
2329
+ },
2330
+ {
2331
+ "epoch": 1.7183908045977012,
2332
+ "grad_norm": 0.07759315520524979,
2333
+ "learning_rate": 9.297238110547074e-05,
2334
+ "loss": 0.6464,
2335
+ "step": 299
2336
+ },
2337
+ {
2338
+ "epoch": 1.7241379310344827,
2339
+ "grad_norm": 0.0833640992641449,
2340
+ "learning_rate": 9.230435073959232e-05,
2341
+ "loss": 0.6467,
2342
+ "step": 300
2343
+ },
2344
+ {
2345
+ "epoch": 1.7241379310344827,
2346
+ "eval_loss": 0.6469475030899048,
2347
+ "eval_runtime": 408.9385,
2348
+ "eval_samples_per_second": 24.204,
2349
+ "eval_steps_per_second": 0.379,
2350
+ "step": 300
2351
+ },
2352
+ {
2353
+ "epoch": 1.7298850574712645,
2354
+ "grad_norm": 0.08030898869037628,
2355
+ "learning_rate": 9.163666567460733e-05,
2356
+ "loss": 0.6268,
2357
+ "step": 301
2358
+ },
2359
+ {
2360
+ "epoch": 1.735632183908046,
2361
+ "grad_norm": 0.08017026633024216,
2362
+ "learning_rate": 9.096935586929392e-05,
2363
+ "loss": 0.6367,
2364
+ "step": 302
2365
+ },
2366
+ {
2367
+ "epoch": 1.7413793103448276,
2368
+ "grad_norm": 0.07945988327264786,
2369
+ "learning_rate": 9.030245126559262e-05,
2370
+ "loss": 0.6318,
2371
+ "step": 303
2372
+ },
2373
+ {
2374
+ "epoch": 1.7471264367816093,
2375
+ "grad_norm": 0.09426795691251755,
2376
+ "learning_rate": 8.963598178726254e-05,
2377
+ "loss": 0.6399,
2378
+ "step": 304
2379
+ },
2380
+ {
2381
+ "epoch": 1.7528735632183907,
2382
+ "grad_norm": 0.08182523399591446,
2383
+ "learning_rate": 8.896997733853903e-05,
2384
+ "loss": 0.6203,
2385
+ "step": 305
2386
+ },
2387
+ {
2388
+ "epoch": 1.7586206896551724,
2389
+ "grad_norm": 0.07778620719909668,
2390
+ "learning_rate": 8.830446780279176e-05,
2391
+ "loss": 0.6816,
2392
+ "step": 306
2393
+ },
2394
+ {
2395
+ "epoch": 1.764367816091954,
2396
+ "grad_norm": 0.11482707411050797,
2397
+ "learning_rate": 8.763948304118368e-05,
2398
+ "loss": 0.6442,
2399
+ "step": 307
2400
+ },
2401
+ {
2402
+ "epoch": 1.7701149425287355,
2403
+ "grad_norm": 0.07546856999397278,
2404
+ "learning_rate": 8.697505289133145e-05,
2405
+ "loss": 0.6445,
2406
+ "step": 308
2407
+ },
2408
+ {
2409
+ "epoch": 1.7758620689655173,
2410
+ "grad_norm": 0.11665278673171997,
2411
+ "learning_rate": 8.631120716596641e-05,
2412
+ "loss": 0.6374,
2413
+ "step": 309
2414
+ },
2415
+ {
2416
+ "epoch": 1.7816091954022988,
2417
+ "grad_norm": 0.1181105300784111,
2418
+ "learning_rate": 8.564797565159714e-05,
2419
+ "loss": 0.6146,
2420
+ "step": 310
2421
+ },
2422
+ {
2423
+ "epoch": 1.7816091954022988,
2424
+ "eval_loss": 0.6459708213806152,
2425
+ "eval_runtime": 405.0602,
2426
+ "eval_samples_per_second": 24.436,
2427
+ "eval_steps_per_second": 0.383,
2428
+ "step": 310
2429
+ },
2430
+ {
2431
+ "epoch": 1.7873563218390804,
2432
+ "grad_norm": 0.07805997133255005,
2433
+ "learning_rate": 8.498538810717267e-05,
2434
+ "loss": 0.6679,
2435
+ "step": 311
2436
+ },
2437
+ {
2438
+ "epoch": 1.793103448275862,
2439
+ "grad_norm": 0.08421120047569275,
2440
+ "learning_rate": 8.432347426274739e-05,
2441
+ "loss": 0.642,
2442
+ "step": 312
2443
+ },
2444
+ {
2445
+ "epoch": 1.7988505747126435,
2446
+ "grad_norm": 0.10425391793251038,
2447
+ "learning_rate": 8.366226381814697e-05,
2448
+ "loss": 0.6354,
2449
+ "step": 313
2450
+ },
2451
+ {
2452
+ "epoch": 1.8045977011494254,
2453
+ "grad_norm": 0.08861584216356277,
2454
+ "learning_rate": 8.300178644163594e-05,
2455
+ "loss": 0.6397,
2456
+ "step": 314
2457
+ },
2458
+ {
2459
+ "epoch": 1.8103448275862069,
2460
+ "grad_norm": 0.08726219832897186,
2461
+ "learning_rate": 8.234207176858614e-05,
2462
+ "loss": 0.6474,
2463
+ "step": 315
2464
+ },
2465
+ {
2466
+ "epoch": 1.8160919540229885,
2467
+ "grad_norm": 0.12218604981899261,
2468
+ "learning_rate": 8.16831494001474e-05,
2469
+ "loss": 0.6459,
2470
+ "step": 316
2471
+ },
2472
+ {
2473
+ "epoch": 1.8218390804597702,
2474
+ "grad_norm": 0.08113615214824677,
2475
+ "learning_rate": 8.102504890191892e-05,
2476
+ "loss": 0.6114,
2477
+ "step": 317
2478
+ },
2479
+ {
2480
+ "epoch": 1.8275862068965516,
2481
+ "grad_norm": 0.08763635903596878,
2482
+ "learning_rate": 8.036779980262311e-05,
2483
+ "loss": 0.6602,
2484
+ "step": 318
2485
+ },
2486
+ {
2487
+ "epoch": 1.8333333333333335,
2488
+ "grad_norm": 0.1053246557712555,
2489
+ "learning_rate": 7.971143159278026e-05,
2490
+ "loss": 0.6182,
2491
+ "step": 319
2492
+ },
2493
+ {
2494
+ "epoch": 1.839080459770115,
2495
+ "grad_norm": 0.09522312134504318,
2496
+ "learning_rate": 7.905597372338558e-05,
2497
+ "loss": 0.6386,
2498
+ "step": 320
2499
+ },
2500
+ {
2501
+ "epoch": 1.839080459770115,
2502
+ "eval_loss": 0.6449984908103943,
2503
+ "eval_runtime": 405.9165,
2504
+ "eval_samples_per_second": 24.384,
2505
+ "eval_steps_per_second": 0.382,
2506
+ "step": 320
2507
+ },
2508
+ {
2509
+ "epoch": 1.8448275862068966,
2510
+ "grad_norm": 0.09493348747491837,
2511
+ "learning_rate": 7.840145560458756e-05,
2512
+ "loss": 0.6522,
2513
+ "step": 321
2514
+ },
2515
+ {
2516
+ "epoch": 1.8505747126436782,
2517
+ "grad_norm": 0.10554379224777222,
2518
+ "learning_rate": 7.774790660436858e-05,
2519
+ "loss": 0.6401,
2520
+ "step": 322
2521
+ },
2522
+ {
2523
+ "epoch": 1.8563218390804597,
2524
+ "grad_norm": 0.09237196296453476,
2525
+ "learning_rate": 7.709535604722684e-05,
2526
+ "loss": 0.6315,
2527
+ "step": 323
2528
+ },
2529
+ {
2530
+ "epoch": 1.8620689655172413,
2531
+ "grad_norm": 0.07175464183092117,
2532
+ "learning_rate": 7.644383321286094e-05,
2533
+ "loss": 0.6559,
2534
+ "step": 324
2535
+ },
2536
+ {
2537
+ "epoch": 1.867816091954023,
2538
+ "grad_norm": 0.08578918129205704,
2539
+ "learning_rate": 7.579336733485584e-05,
2540
+ "loss": 0.6297,
2541
+ "step": 325
2542
+ },
2543
+ {
2544
+ "epoch": 1.8735632183908046,
2545
+ "grad_norm": 0.14390091598033905,
2546
+ "learning_rate": 7.514398759937135e-05,
2547
+ "loss": 0.6155,
2548
+ "step": 326
2549
+ },
2550
+ {
2551
+ "epoch": 1.8793103448275863,
2552
+ "grad_norm": 0.07774030417203903,
2553
+ "learning_rate": 7.449572314383237e-05,
2554
+ "loss": 0.6551,
2555
+ "step": 327
2556
+ },
2557
+ {
2558
+ "epoch": 1.8850574712643677,
2559
+ "grad_norm": 0.07927459478378296,
2560
+ "learning_rate": 7.384860305562172e-05,
2561
+ "loss": 0.6312,
2562
+ "step": 328
2563
+ },
2564
+ {
2565
+ "epoch": 1.8908045977011494,
2566
+ "grad_norm": 0.11287631094455719,
2567
+ "learning_rate": 7.320265637077473e-05,
2568
+ "loss": 0.66,
2569
+ "step": 329
2570
+ },
2571
+ {
2572
+ "epoch": 1.896551724137931,
2573
+ "grad_norm": 0.09955232590436935,
2574
+ "learning_rate": 7.255791207267679e-05,
2575
+ "loss": 0.6456,
2576
+ "step": 330
2577
+ },
2578
+ {
2579
+ "epoch": 1.896551724137931,
2580
+ "eval_loss": 0.6442980766296387,
2581
+ "eval_runtime": 404.2901,
2582
+ "eval_samples_per_second": 24.482,
2583
+ "eval_steps_per_second": 0.383,
2584
+ "step": 330
2585
+ },
2586
+ {
2587
+ "epoch": 1.9022988505747125,
2588
+ "grad_norm": 0.07881880551576614,
2589
+ "learning_rate": 7.191439909076243e-05,
2590
+ "loss": 0.6398,
2591
+ "step": 331
2592
+ },
2593
+ {
2594
+ "epoch": 1.9080459770114944,
2595
+ "grad_norm": 0.15244217216968536,
2596
+ "learning_rate": 7.127214629921765e-05,
2597
+ "loss": 0.6614,
2598
+ "step": 332
2599
+ },
2600
+ {
2601
+ "epoch": 1.9137931034482758,
2602
+ "grad_norm": 0.07337264716625214,
2603
+ "learning_rate": 7.0631182515684e-05,
2604
+ "loss": 0.6294,
2605
+ "step": 333
2606
+ },
2607
+ {
2608
+ "epoch": 1.9195402298850575,
2609
+ "grad_norm": 0.07102935016155243,
2610
+ "learning_rate": 6.999153649996595e-05,
2611
+ "loss": 0.6237,
2612
+ "step": 334
2613
+ },
2614
+ {
2615
+ "epoch": 1.9252873563218391,
2616
+ "grad_norm": 0.09349462389945984,
2617
+ "learning_rate": 6.935323695274002e-05,
2618
+ "loss": 0.6051,
2619
+ "step": 335
2620
+ },
2621
+ {
2622
+ "epoch": 1.9310344827586206,
2623
+ "grad_norm": 0.0851803794503212,
2624
+ "learning_rate": 6.871631251426728e-05,
2625
+ "loss": 0.6548,
2626
+ "step": 336
2627
+ },
2628
+ {
2629
+ "epoch": 1.9367816091954024,
2630
+ "grad_norm": 0.08571562170982361,
2631
+ "learning_rate": 6.808079176310827e-05,
2632
+ "loss": 0.6136,
2633
+ "step": 337
2634
+ },
2635
+ {
2636
+ "epoch": 1.9425287356321839,
2637
+ "grad_norm": 0.0772768035531044,
2638
+ "learning_rate": 6.744670321484043e-05,
2639
+ "loss": 0.6668,
2640
+ "step": 338
2641
+ },
2642
+ {
2643
+ "epoch": 1.9482758620689655,
2644
+ "grad_norm": 0.08812547475099564,
2645
+ "learning_rate": 6.681407532077895e-05,
2646
+ "loss": 0.6427,
2647
+ "step": 339
2648
+ },
2649
+ {
2650
+ "epoch": 1.9540229885057472,
2651
+ "grad_norm": 0.09011583775281906,
2652
+ "learning_rate": 6.618293646669986e-05,
2653
+ "loss": 0.6402,
2654
+ "step": 340
2655
+ },
2656
+ {
2657
+ "epoch": 1.9540229885057472,
2658
+ "eval_loss": 0.6436823606491089,
2659
+ "eval_runtime": 413.0204,
2660
+ "eval_samples_per_second": 23.965,
2661
+ "eval_steps_per_second": 0.375,
2662
+ "step": 340
2663
+ },
2664
+ {
2665
+ "epoch": 1.9597701149425286,
2666
+ "grad_norm": 0.08234158158302307,
2667
+ "learning_rate": 6.555331497156672e-05,
2668
+ "loss": 0.6362,
2669
+ "step": 341
2670
+ },
2671
+ {
2672
+ "epoch": 1.9655172413793105,
2673
+ "grad_norm": 0.0780014768242836,
2674
+ "learning_rate": 6.492523908625959e-05,
2675
+ "loss": 0.6454,
2676
+ "step": 342
2677
+ },
2678
+ {
2679
+ "epoch": 1.971264367816092,
2680
+ "grad_norm": 0.08458276093006134,
2681
+ "learning_rate": 6.42987369923077e-05,
2682
+ "loss": 0.6587,
2683
+ "step": 343
2684
+ },
2685
+ {
2686
+ "epoch": 1.9770114942528736,
2687
+ "grad_norm": 0.11979149281978607,
2688
+ "learning_rate": 6.367383680062478e-05,
2689
+ "loss": 0.6369,
2690
+ "step": 344
2691
+ },
2692
+ {
2693
+ "epoch": 1.9827586206896552,
2694
+ "grad_norm": 0.08782167732715607,
2695
+ "learning_rate": 6.30505665502479e-05,
2696
+ "loss": 0.6382,
2697
+ "step": 345
2698
+ },
2699
+ {
2700
+ "epoch": 1.9885057471264367,
2701
+ "grad_norm": 0.07542918622493744,
2702
+ "learning_rate": 6.242895420707917e-05,
2703
+ "loss": 0.6238,
2704
+ "step": 346
2705
+ },
2706
+ {
2707
+ "epoch": 1.9942528735632183,
2708
+ "grad_norm": 0.09390002489089966,
2709
+ "learning_rate": 6.180902766263113e-05,
2710
+ "loss": 0.632,
2711
+ "step": 347
2712
+ },
2713
+ {
2714
+ "epoch": 2.0,
2715
+ "grad_norm": 0.10154885053634644,
2716
+ "learning_rate": 6.119081473277501e-05,
2717
+ "loss": 0.6078,
2718
+ "step": 348
2719
+ },
2720
+ {
2721
+ "epoch": 2.0057471264367814,
2722
+ "grad_norm": 0.09035320580005646,
2723
+ "learning_rate": 6.057434315649304e-05,
2724
+ "loss": 0.6331,
2725
+ "step": 349
2726
+ },
2727
+ {
2728
+ "epoch": 2.0114942528735633,
2729
+ "grad_norm": 0.1151895746588707,
2730
+ "learning_rate": 5.99596405946333e-05,
2731
+ "loss": 0.6455,
2732
+ "step": 350
2733
+ },
2734
+ {
2735
+ "epoch": 2.0114942528735633,
2736
+ "eval_loss": 0.6433547139167786,
2737
+ "eval_runtime": 409.0063,
2738
+ "eval_samples_per_second": 24.2,
2739
+ "eval_steps_per_second": 0.379,
2740
+ "step": 350
2741
+ },
2742
+ {
2743
+ "epoch": 2.0172413793103448,
2744
+ "grad_norm": 0.10666079819202423,
2745
+ "learning_rate": 5.9346734628669065e-05,
2746
+ "loss": 0.6473,
2747
+ "step": 351
2748
+ },
2749
+ {
2750
+ "epoch": 2.0229885057471266,
2751
+ "grad_norm": 0.09095422178506851,
2752
+ "learning_rate": 5.873565275946088e-05,
2753
+ "loss": 0.6335,
2754
+ "step": 352
2755
+ },
2756
+ {
2757
+ "epoch": 2.028735632183908,
2758
+ "grad_norm": 0.09256957471370697,
2759
+ "learning_rate": 5.8126422406022885e-05,
2760
+ "loss": 0.5969,
2761
+ "step": 353
2762
+ },
2763
+ {
2764
+ "epoch": 2.0344827586206895,
2765
+ "grad_norm": 0.1397576928138733,
2766
+ "learning_rate": 5.7519070904292247e-05,
2767
+ "loss": 0.5919,
2768
+ "step": 354
2769
+ },
2770
+ {
2771
+ "epoch": 2.0402298850574714,
2772
+ "grad_norm": 0.0867573469877243,
2773
+ "learning_rate": 5.691362550590297e-05,
2774
+ "loss": 0.5909,
2775
+ "step": 355
2776
+ },
2777
+ {
2778
+ "epoch": 2.045977011494253,
2779
+ "grad_norm": 0.07953327894210815,
2780
+ "learning_rate": 5.631011337696271e-05,
2781
+ "loss": 0.5959,
2782
+ "step": 356
2783
+ },
2784
+ {
2785
+ "epoch": 2.0517241379310347,
2786
+ "grad_norm": 0.09324570745229721,
2787
+ "learning_rate": 5.570856159683418e-05,
2788
+ "loss": 0.6216,
2789
+ "step": 357
2790
+ },
2791
+ {
2792
+ "epoch": 2.057471264367816,
2793
+ "grad_norm": 0.10510014742612839,
2794
+ "learning_rate": 5.510899715691984e-05,
2795
+ "loss": 0.6172,
2796
+ "step": 358
2797
+ },
2798
+ {
2799
+ "epoch": 2.0632183908045976,
2800
+ "grad_norm": 0.08669542521238327,
2801
+ "learning_rate": 5.451144695945116e-05,
2802
+ "loss": 0.5931,
2803
+ "step": 359
2804
+ },
2805
+ {
2806
+ "epoch": 2.0689655172413794,
2807
+ "grad_norm": 0.09054102748632431,
2808
+ "learning_rate": 5.3915937816281095e-05,
2809
+ "loss": 0.5888,
2810
+ "step": 360
2811
+ },
2812
+ {
2813
+ "epoch": 2.0689655172413794,
2814
+ "eval_loss": 0.643742024898529,
2815
+ "eval_runtime": 404.2471,
2816
+ "eval_samples_per_second": 24.485,
2817
+ "eval_steps_per_second": 0.383,
2818
+ "step": 360
2819
+ },
2820
+ {
2821
+ "epoch": 2.074712643678161,
2822
+ "grad_norm": 0.11839323490858078,
2823
+ "learning_rate": 5.3322496447681414e-05,
2824
+ "loss": 0.6093,
2825
+ "step": 361
2826
+ },
2827
+ {
2828
+ "epoch": 2.0804597701149423,
2829
+ "grad_norm": 0.1050933375954628,
2830
+ "learning_rate": 5.273114948114346e-05,
2831
+ "loss": 0.6247,
2832
+ "step": 362
2833
+ },
2834
+ {
2835
+ "epoch": 2.086206896551724,
2836
+ "grad_norm": 0.09781333059072495,
2837
+ "learning_rate": 5.214192345018374e-05,
2838
+ "loss": 0.6274,
2839
+ "step": 363
2840
+ },
2841
+ {
2842
+ "epoch": 2.0919540229885056,
2843
+ "grad_norm": 0.09329628199338913,
2844
+ "learning_rate": 5.1554844793153e-05,
2845
+ "loss": 0.6243,
2846
+ "step": 364
2847
+ },
2848
+ {
2849
+ "epoch": 2.0977011494252875,
2850
+ "grad_norm": 0.08716364949941635,
2851
+ "learning_rate": 5.096993985205023e-05,
2852
+ "loss": 0.6149,
2853
+ "step": 365
2854
+ },
2855
+ {
2856
+ "epoch": 2.103448275862069,
2857
+ "grad_norm": 0.09969545155763626,
2858
+ "learning_rate": 5.0387234871340486e-05,
2859
+ "loss": 0.635,
2860
+ "step": 366
2861
+ },
2862
+ {
2863
+ "epoch": 2.1091954022988504,
2864
+ "grad_norm": 0.10841623693704605,
2865
+ "learning_rate": 4.980675599677757e-05,
2866
+ "loss": 0.6544,
2867
+ "step": 367
2868
+ },
2869
+ {
2870
+ "epoch": 2.1149425287356323,
2871
+ "grad_norm": 0.07902085781097412,
2872
+ "learning_rate": 4.9228529274230695e-05,
2873
+ "loss": 0.6144,
2874
+ "step": 368
2875
+ },
2876
+ {
2877
+ "epoch": 2.1206896551724137,
2878
+ "grad_norm": 0.11440268158912659,
2879
+ "learning_rate": 4.865258064851579e-05,
2880
+ "loss": 0.6217,
2881
+ "step": 369
2882
+ },
2883
+ {
2884
+ "epoch": 2.1264367816091956,
2885
+ "grad_norm": 0.09594007581472397,
2886
+ "learning_rate": 4.807893596223152e-05,
2887
+ "loss": 0.6267,
2888
+ "step": 370
2889
+ },
2890
+ {
2891
+ "epoch": 2.1264367816091956,
2892
+ "eval_loss": 0.6434890031814575,
2893
+ "eval_runtime": 404.1508,
2894
+ "eval_samples_per_second": 24.491,
2895
+ "eval_steps_per_second": 0.384,
2896
+ "step": 370
2897
+ },
2898
+ {
2899
+ "epoch": 2.132183908045977,
2900
+ "grad_norm": 0.09025128185749054,
2901
+ "learning_rate": 4.75076209545996e-05,
2902
+ "loss": 0.6122,
2903
+ "step": 371
2904
+ },
2905
+ {
2906
+ "epoch": 2.1379310344827585,
2907
+ "grad_norm": 0.09677668660879135,
2908
+ "learning_rate": 4.693866126030995e-05,
2909
+ "loss": 0.6339,
2910
+ "step": 372
2911
+ },
2912
+ {
2913
+ "epoch": 2.1436781609195403,
2914
+ "grad_norm": 0.08178266882896423,
2915
+ "learning_rate": 4.637208240837042e-05,
2916
+ "loss": 0.6392,
2917
+ "step": 373
2918
+ },
2919
+ {
2920
+ "epoch": 2.1494252873563218,
2921
+ "grad_norm": 0.10616466403007507,
2922
+ "learning_rate": 4.5807909820961494e-05,
2923
+ "loss": 0.6207,
2924
+ "step": 374
2925
+ },
2926
+ {
2927
+ "epoch": 2.1551724137931036,
2928
+ "grad_norm": 0.08333076536655426,
2929
+ "learning_rate": 4.5246168812295286e-05,
2930
+ "loss": 0.6148,
2931
+ "step": 375
2932
+ },
2933
+ {
2934
+ "epoch": 2.160919540229885,
2935
+ "grad_norm": 0.1016552671790123,
2936
+ "learning_rate": 4.468688458748006e-05,
2937
+ "loss": 0.6306,
2938
+ "step": 376
2939
+ },
2940
+ {
2941
+ "epoch": 2.1666666666666665,
2942
+ "grad_norm": 0.08546506613492966,
2943
+ "learning_rate": 4.413008224138897e-05,
2944
+ "loss": 0.606,
2945
+ "step": 377
2946
+ },
2947
+ {
2948
+ "epoch": 2.1724137931034484,
2949
+ "grad_norm": 0.08369904011487961,
2950
+ "learning_rate": 4.357578675753432e-05,
2951
+ "loss": 0.6007,
2952
+ "step": 378
2953
+ },
2954
+ {
2955
+ "epoch": 2.17816091954023,
2956
+ "grad_norm": 0.08523935824632645,
2957
+ "learning_rate": 4.302402300694636e-05,
2958
+ "loss": 0.5884,
2959
+ "step": 379
2960
+ },
2961
+ {
2962
+ "epoch": 2.1839080459770113,
2963
+ "grad_norm": 0.0944519191980362,
2964
+ "learning_rate": 4.247481574705744e-05,
2965
+ "loss": 0.6292,
2966
+ "step": 380
2967
+ },
2968
+ {
2969
+ "epoch": 2.1839080459770113,
2970
+ "eval_loss": 0.6433520913124084,
2971
+ "eval_runtime": 404.2218,
2972
+ "eval_samples_per_second": 24.487,
2973
+ "eval_steps_per_second": 0.383,
2974
+ "step": 380
2975
+ },
2976
+ {
2977
+ "epoch": 2.189655172413793,
2978
+ "grad_norm": 0.11311980336904526,
2979
+ "learning_rate": 4.1928189620591116e-05,
2980
+ "loss": 0.6103,
2981
+ "step": 381
2982
+ },
2983
+ {
2984
+ "epoch": 2.1954022988505746,
2985
+ "grad_norm": 0.08662451803684235,
2986
+ "learning_rate": 4.138416915445655e-05,
2987
+ "loss": 0.5852,
2988
+ "step": 382
2989
+ },
2990
+ {
2991
+ "epoch": 2.2011494252873565,
2992
+ "grad_norm": 0.09417479485273361,
2993
+ "learning_rate": 4.084277875864776e-05,
2994
+ "loss": 0.6467,
2995
+ "step": 383
2996
+ },
2997
+ {
2998
+ "epoch": 2.206896551724138,
2999
+ "grad_norm": 0.09818896651268005,
3000
+ "learning_rate": 4.030404272514864e-05,
3001
+ "loss": 0.6112,
3002
+ "step": 384
3003
+ },
3004
+ {
3005
+ "epoch": 2.2126436781609193,
3006
+ "grad_norm": 0.08806431293487549,
3007
+ "learning_rate": 3.9767985226842696e-05,
3008
+ "loss": 0.5822,
3009
+ "step": 385
3010
+ },
3011
+ {
3012
+ "epoch": 2.218390804597701,
3013
+ "grad_norm": 0.0837361216545105,
3014
+ "learning_rate": 3.923463031642872e-05,
3015
+ "loss": 0.6137,
3016
+ "step": 386
3017
+ },
3018
+ {
3019
+ "epoch": 2.2241379310344827,
3020
+ "grad_norm": 0.10712449252605438,
3021
+ "learning_rate": 3.870400192534128e-05,
3022
+ "loss": 0.602,
3023
+ "step": 387
3024
+ },
3025
+ {
3026
+ "epoch": 2.2298850574712645,
3027
+ "grad_norm": 0.11590448766946793,
3028
+ "learning_rate": 3.81761238626771e-05,
3029
+ "loss": 0.6215,
3030
+ "step": 388
3031
+ },
3032
+ {
3033
+ "epoch": 2.235632183908046,
3034
+ "grad_norm": 0.08264652639627457,
3035
+ "learning_rate": 3.7651019814126654e-05,
3036
+ "loss": 0.6002,
3037
+ "step": 389
3038
+ },
3039
+ {
3040
+ "epoch": 2.2413793103448274,
3041
+ "grad_norm": 0.08986306935548782,
3042
+ "learning_rate": 3.7128713340911535e-05,
3043
+ "loss": 0.6058,
3044
+ "step": 390
3045
+ },
3046
+ {
3047
+ "epoch": 2.2413793103448274,
3048
+ "eval_loss": 0.6431533098220825,
3049
+ "eval_runtime": 419.2567,
3050
+ "eval_samples_per_second": 23.608,
3051
+ "eval_steps_per_second": 0.37,
3052
+ "step": 390
3053
+ },
3054
+ {
3055
+ "epoch": 2.2471264367816093,
3056
+ "grad_norm": 0.3949902057647705,
3057
+ "learning_rate": 3.660922787872706e-05,
3058
+ "loss": 0.643,
3059
+ "step": 391
3060
+ },
3061
+ {
3062
+ "epoch": 2.2528735632183907,
3063
+ "grad_norm": 0.09183293581008911,
3064
+ "learning_rate": 3.609258673669097e-05,
3065
+ "loss": 0.5931,
3066
+ "step": 392
3067
+ },
3068
+ {
3069
+ "epoch": 2.2586206896551726,
3070
+ "grad_norm": 0.0786626785993576,
3071
+ "learning_rate": 3.557881309629729e-05,
3072
+ "loss": 0.5795,
3073
+ "step": 393
3074
+ },
3075
+ {
3076
+ "epoch": 2.264367816091954,
3077
+ "grad_norm": 0.08318330347537994,
3078
+ "learning_rate": 3.5067930010376484e-05,
3079
+ "loss": 0.6173,
3080
+ "step": 394
3081
+ },
3082
+ {
3083
+ "epoch": 2.2701149425287355,
3084
+ "grad_norm": 0.09149078279733658,
3085
+ "learning_rate": 3.455996040206076e-05,
3086
+ "loss": 0.6238,
3087
+ "step": 395
3088
+ },
3089
+ {
3090
+ "epoch": 2.2758620689655173,
3091
+ "grad_norm": 0.09578599780797958,
3092
+ "learning_rate": 3.4054927063755796e-05,
3093
+ "loss": 0.6264,
3094
+ "step": 396
3095
+ },
3096
+ {
3097
+ "epoch": 2.281609195402299,
3098
+ "grad_norm": 0.08735264092683792,
3099
+ "learning_rate": 3.355285265611784e-05,
3100
+ "loss": 0.6269,
3101
+ "step": 397
3102
+ },
3103
+ {
3104
+ "epoch": 2.2873563218390807,
3105
+ "grad_norm": 0.0886816754937172,
3106
+ "learning_rate": 3.305375970703711e-05,
3107
+ "loss": 0.6043,
3108
+ "step": 398
3109
+ },
3110
+ {
3111
+ "epoch": 2.293103448275862,
3112
+ "grad_norm": 0.07559609413146973,
3113
+ "learning_rate": 3.2557670610626925e-05,
3114
+ "loss": 0.6416,
3115
+ "step": 399
3116
+ },
3117
+ {
3118
+ "epoch": 2.2988505747126435,
3119
+ "grad_norm": 0.11379113793373108,
3120
+ "learning_rate": 3.206460762621873e-05,
3121
+ "loss": 0.6221,
3122
+ "step": 400
3123
+ },
3124
+ {
3125
+ "epoch": 2.2988505747126435,
3126
+ "eval_loss": 0.6427375078201294,
3127
+ "eval_runtime": 405.8229,
3128
+ "eval_samples_per_second": 24.39,
3129
+ "eval_steps_per_second": 0.382,
3130
+ "step": 400
3131
+ },
3132
+ {
3133
+ "epoch": 2.3045977011494254,
3134
+ "grad_norm": 0.08930199593305588,
3135
+ "learning_rate": 3.157459287736362e-05,
3136
+ "loss": 0.599,
3137
+ "step": 401
3138
+ },
3139
+ {
3140
+ "epoch": 2.310344827586207,
3141
+ "grad_norm": 0.11189960688352585,
3142
+ "learning_rate": 3.108764835083938e-05,
3143
+ "loss": 0.6243,
3144
+ "step": 402
3145
+ },
3146
+ {
3147
+ "epoch": 2.3160919540229887,
3148
+ "grad_norm": 0.0793476328253746,
3149
+ "learning_rate": 3.0603795895664124e-05,
3150
+ "loss": 0.615,
3151
+ "step": 403
3152
+ },
3153
+ {
3154
+ "epoch": 2.32183908045977,
3155
+ "grad_norm": 0.0860418751835823,
3156
+ "learning_rate": 3.0123057222115836e-05,
3157
+ "loss": 0.5968,
3158
+ "step": 404
3159
+ },
3160
+ {
3161
+ "epoch": 2.3275862068965516,
3162
+ "grad_norm": 0.08753317594528198,
3163
+ "learning_rate": 2.964545390075841e-05,
3164
+ "loss": 0.6192,
3165
+ "step": 405
3166
+ },
3167
+ {
3168
+ "epoch": 2.3333333333333335,
3169
+ "grad_norm": 0.09598301351070404,
3170
+ "learning_rate": 2.9171007361473514e-05,
3171
+ "loss": 0.6237,
3172
+ "step": 406
3173
+ },
3174
+ {
3175
+ "epoch": 2.339080459770115,
3176
+ "grad_norm": 0.10627751052379608,
3177
+ "learning_rate": 2.8699738892499328e-05,
3178
+ "loss": 0.6123,
3179
+ "step": 407
3180
+ },
3181
+ {
3182
+ "epoch": 2.344827586206897,
3183
+ "grad_norm": 0.08839675039052963,
3184
+ "learning_rate": 2.8231669639475067e-05,
3185
+ "loss": 0.6123,
3186
+ "step": 408
3187
+ },
3188
+ {
3189
+ "epoch": 2.3505747126436782,
3190
+ "grad_norm": 0.08533503860235214,
3191
+ "learning_rate": 2.776682060449247e-05,
3192
+ "loss": 0.6251,
3193
+ "step": 409
3194
+ },
3195
+ {
3196
+ "epoch": 2.3563218390804597,
3197
+ "grad_norm": 0.10517686605453491,
3198
+ "learning_rate": 2.7305212645153212e-05,
3199
+ "loss": 0.6254,
3200
+ "step": 410
3201
+ },
3202
+ {
3203
+ "epoch": 2.3563218390804597,
3204
+ "eval_loss": 0.6428195238113403,
3205
+ "eval_runtime": 404.1758,
3206
+ "eval_samples_per_second": 24.489,
3207
+ "eval_steps_per_second": 0.383,
3208
+ "step": 410
3209
+ },
3210
+ {
3211
+ "epoch": 2.3620689655172415,
3212
+ "grad_norm": 0.10578128695487976,
3213
+ "learning_rate": 2.6846866473633125e-05,
3214
+ "loss": 0.6216,
3215
+ "step": 411
3216
+ },
3217
+ {
3218
+ "epoch": 2.367816091954023,
3219
+ "grad_norm": 0.10083532333374023,
3220
+ "learning_rate": 2.6391802655752853e-05,
3221
+ "loss": 0.6052,
3222
+ "step": 412
3223
+ },
3224
+ {
3225
+ "epoch": 2.3735632183908044,
3226
+ "grad_norm": 0.08413968980312347,
3227
+ "learning_rate": 2.594004161005511e-05,
3228
+ "loss": 0.6007,
3229
+ "step": 413
3230
+ },
3231
+ {
3232
+ "epoch": 2.3793103448275863,
3233
+ "grad_norm": 0.08840201050043106,
3234
+ "learning_rate": 2.549160360688838e-05,
3235
+ "loss": 0.5876,
3236
+ "step": 414
3237
+ },
3238
+ {
3239
+ "epoch": 2.3850574712643677,
3240
+ "grad_norm": 0.09680577367544174,
3241
+ "learning_rate": 2.50465087674976e-05,
3242
+ "loss": 0.6183,
3243
+ "step": 415
3244
+ },
3245
+ {
3246
+ "epoch": 2.3908045977011496,
3247
+ "grad_norm": 0.09196774661540985,
3248
+ "learning_rate": 2.4604777063121033e-05,
3249
+ "loss": 0.613,
3250
+ "step": 416
3251
+ },
3252
+ {
3253
+ "epoch": 2.396551724137931,
3254
+ "grad_norm": 0.0849708616733551,
3255
+ "learning_rate": 2.4166428314094514e-05,
3256
+ "loss": 0.6443,
3257
+ "step": 417
3258
+ },
3259
+ {
3260
+ "epoch": 2.4022988505747125,
3261
+ "grad_norm": 0.09316956251859665,
3262
+ "learning_rate": 2.3731482188961818e-05,
3263
+ "loss": 0.6062,
3264
+ "step": 418
3265
+ },
3266
+ {
3267
+ "epoch": 2.4080459770114944,
3268
+ "grad_norm": 0.08482903987169266,
3269
+ "learning_rate": 2.32999582035923e-05,
3270
+ "loss": 0.6099,
3271
+ "step": 419
3272
+ },
3273
+ {
3274
+ "epoch": 2.413793103448276,
3275
+ "grad_norm": 0.08352029323577881,
3276
+ "learning_rate": 2.287187572030516e-05,
3277
+ "loss": 0.6178,
3278
+ "step": 420
3279
+ },
3280
+ {
3281
+ "epoch": 2.413793103448276,
3282
+ "eval_loss": 0.6422638297080994,
3283
+ "eval_runtime": 404.4609,
3284
+ "eval_samples_per_second": 24.472,
3285
+ "eval_steps_per_second": 0.383,
3286
+ "step": 420
3287
+ },
3288
+ {
3289
+ "epoch": 2.4195402298850572,
3290
+ "grad_norm": 0.09856913238763809,
3291
+ "learning_rate": 2.244725394700079e-05,
3292
+ "loss": 0.6166,
3293
+ "step": 421
3294
+ },
3295
+ {
3296
+ "epoch": 2.425287356321839,
3297
+ "grad_norm": 0.10127527266740799,
3298
+ "learning_rate": 2.202611193629869e-05,
3299
+ "loss": 0.6195,
3300
+ "step": 422
3301
+ },
3302
+ {
3303
+ "epoch": 2.4310344827586206,
3304
+ "grad_norm": 0.09415800124406815,
3305
+ "learning_rate": 2.160846858468285e-05,
3306
+ "loss": 0.6157,
3307
+ "step": 423
3308
+ },
3309
+ {
3310
+ "epoch": 2.4367816091954024,
3311
+ "grad_norm": 0.08563528954982758,
3312
+ "learning_rate": 2.1194342631653607e-05,
3313
+ "loss": 0.6212,
3314
+ "step": 424
3315
+ },
3316
+ {
3317
+ "epoch": 2.442528735632184,
3318
+ "grad_norm": 0.0861605629324913,
3319
+ "learning_rate": 2.0783752658887066e-05,
3320
+ "loss": 0.6095,
3321
+ "step": 425
3322
+ },
3323
+ {
3324
+ "epoch": 2.4482758620689653,
3325
+ "grad_norm": 0.1125798374414444,
3326
+ "learning_rate": 2.0376717089401164e-05,
3327
+ "loss": 0.606,
3328
+ "step": 426
3329
+ },
3330
+ {
3331
+ "epoch": 2.454022988505747,
3332
+ "grad_norm": 0.09633134305477142,
3333
+ "learning_rate": 1.9973254186729086e-05,
3334
+ "loss": 0.6109,
3335
+ "step": 427
3336
+ },
3337
+ {
3338
+ "epoch": 2.4597701149425286,
3339
+ "grad_norm": 0.08123010396957397,
3340
+ "learning_rate": 1.9573382054099786e-05,
3341
+ "loss": 0.5896,
3342
+ "step": 428
3343
+ },
3344
+ {
3345
+ "epoch": 2.4655172413793105,
3346
+ "grad_norm": 0.08620712906122208,
3347
+ "learning_rate": 1.9177118633625814e-05,
3348
+ "loss": 0.6022,
3349
+ "step": 429
3350
+ },
3351
+ {
3352
+ "epoch": 2.471264367816092,
3353
+ "grad_norm": 0.08710537105798721,
3354
+ "learning_rate": 1.8784481705498015e-05,
3355
+ "loss": 0.6161,
3356
+ "step": 430
3357
+ },
3358
+ {
3359
+ "epoch": 2.471264367816092,
3360
+ "eval_loss": 0.642048180103302,
3361
+ "eval_runtime": 405.7821,
3362
+ "eval_samples_per_second": 24.392,
3363
+ "eval_steps_per_second": 0.382,
3364
+ "step": 430
3365
+ },
3366
+ {
3367
+ "epoch": 2.4770114942528734,
3368
+ "grad_norm": 0.08711250126361847,
3369
+ "learning_rate": 1.8395488887188005e-05,
3370
+ "loss": 0.581,
3371
+ "step": 431
3372
+ },
3373
+ {
3374
+ "epoch": 2.4827586206896552,
3375
+ "grad_norm": 0.08405685424804688,
3376
+ "learning_rate": 1.8010157632657543e-05,
3377
+ "loss": 0.6149,
3378
+ "step": 432
3379
+ },
3380
+ {
3381
+ "epoch": 2.4885057471264367,
3382
+ "grad_norm": 0.08080325275659561,
3383
+ "learning_rate": 1.762850523157532e-05,
3384
+ "loss": 0.6264,
3385
+ "step": 433
3386
+ },
3387
+ {
3388
+ "epoch": 2.4942528735632186,
3389
+ "grad_norm": 0.09836191684007645,
3390
+ "learning_rate": 1.7250548808541322e-05,
3391
+ "loss": 0.6055,
3392
+ "step": 434
3393
+ },
3394
+ {
3395
+ "epoch": 2.5,
3396
+ "grad_norm": 0.10626177489757538,
3397
+ "learning_rate": 1.687630532231833e-05,
3398
+ "loss": 0.5907,
3399
+ "step": 435
3400
+ },
3401
+ {
3402
+ "epoch": 2.5057471264367814,
3403
+ "grad_norm": 0.08308445662260056,
3404
+ "learning_rate": 1.6505791565071138e-05,
3405
+ "loss": 0.6189,
3406
+ "step": 436
3407
+ },
3408
+ {
3409
+ "epoch": 2.5114942528735633,
3410
+ "grad_norm": 0.10249936580657959,
3411
+ "learning_rate": 1.613902416161288e-05,
3412
+ "loss": 0.6084,
3413
+ "step": 437
3414
+ },
3415
+ {
3416
+ "epoch": 2.5172413793103448,
3417
+ "grad_norm": 0.08516431599855423,
3418
+ "learning_rate": 1.5776019568659338e-05,
3419
+ "loss": 0.624,
3420
+ "step": 438
3421
+ },
3422
+ {
3423
+ "epoch": 2.5229885057471266,
3424
+ "grad_norm": 0.08852159231901169,
3425
+ "learning_rate": 1.5416794074090258e-05,
3426
+ "loss": 0.6374,
3427
+ "step": 439
3428
+ },
3429
+ {
3430
+ "epoch": 2.528735632183908,
3431
+ "grad_norm": 0.09616044908761978,
3432
+ "learning_rate": 1.5061363796218785e-05,
3433
+ "loss": 0.634,
3434
+ "step": 440
3435
+ },
3436
+ {
3437
+ "epoch": 2.528735632183908,
3438
+ "eval_loss": 0.6419377326965332,
3439
+ "eval_runtime": 416.5131,
3440
+ "eval_samples_per_second": 23.764,
3441
+ "eval_steps_per_second": 0.372,
3442
+ "step": 440
3443
+ },
3444
+ {
3445
+ "epoch": 2.5344827586206895,
3446
+ "grad_norm": 0.1012992411851883,
3447
+ "learning_rate": 1.4709744683068039e-05,
3448
+ "loss": 0.6443,
3449
+ "step": 441
3450
+ },
3451
+ {
3452
+ "epoch": 2.5402298850574714,
3453
+ "grad_norm": 0.102021224796772,
3454
+ "learning_rate": 1.4361952511655618e-05,
3455
+ "loss": 0.6111,
3456
+ "step": 442
3457
+ },
3458
+ {
3459
+ "epoch": 2.545977011494253,
3460
+ "grad_norm": 0.08464264124631882,
3461
+ "learning_rate": 1.4018002887285687e-05,
3462
+ "loss": 0.6007,
3463
+ "step": 443
3464
+ },
3465
+ {
3466
+ "epoch": 2.5517241379310347,
3467
+ "grad_norm": 0.0829034224152565,
3468
+ "learning_rate": 1.3677911242848806e-05,
3469
+ "loss": 0.6083,
3470
+ "step": 444
3471
+ },
3472
+ {
3473
+ "epoch": 2.557471264367816,
3474
+ "grad_norm": 0.08752921968698502,
3475
+ "learning_rate": 1.334169283812936e-05,
3476
+ "loss": 0.6227,
3477
+ "step": 445
3478
+ },
3479
+ {
3480
+ "epoch": 2.5632183908045976,
3481
+ "grad_norm": 0.080236054956913,
3482
+ "learning_rate": 1.300936275912098e-05,
3483
+ "loss": 0.6212,
3484
+ "step": 446
3485
+ },
3486
+ {
3487
+ "epoch": 2.5689655172413794,
3488
+ "grad_norm": 0.08524277061223984,
3489
+ "learning_rate": 1.2680935917349523e-05,
3490
+ "loss": 0.5915,
3491
+ "step": 447
3492
+ },
3493
+ {
3494
+ "epoch": 2.574712643678161,
3495
+ "grad_norm": 0.09109287708997726,
3496
+ "learning_rate": 1.2356427049204122e-05,
3497
+ "loss": 0.5972,
3498
+ "step": 448
3499
+ },
3500
+ {
3501
+ "epoch": 2.5804597701149428,
3502
+ "grad_norm": 0.11969230324029922,
3503
+ "learning_rate": 1.2035850715275865e-05,
3504
+ "loss": 0.6358,
3505
+ "step": 449
3506
+ },
3507
+ {
3508
+ "epoch": 2.586206896551724,
3509
+ "grad_norm": 0.08512509614229202,
3510
+ "learning_rate": 1.1719221299704497e-05,
3511
+ "loss": 0.6241,
3512
+ "step": 450
3513
+ },
3514
+ {
3515
+ "epoch": 2.586206896551724,
3516
+ "eval_loss": 0.641758382320404,
3517
+ "eval_runtime": 404.7765,
3518
+ "eval_samples_per_second": 24.453,
3519
+ "eval_steps_per_second": 0.383,
3520
+ "step": 450
3521
+ }
3522
+ ],
3523
+ "logging_steps": 1.0,
3524
+ "max_steps": 522,
3525
+ "num_input_tokens_seen": 0,
3526
+ "num_train_epochs": 3,
3527
+ "save_steps": 50,
3528
+ "stateful_callbacks": {
3529
+ "TrainerControl": {
3530
+ "args": {
3531
+ "should_epoch_stop": false,
3532
+ "should_evaluate": false,
3533
+ "should_log": false,
3534
+ "should_save": true,
3535
+ "should_training_stop": false
3536
+ },
3537
+ "attributes": {}
3538
+ }
3539
+ },
3540
+ "total_flos": 4.392870399484468e+19,
3541
+ "train_batch_size": 2,
3542
+ "trial_name": null,
3543
+ "trial_params": null
3544
+ }
checkpoint-450/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /project/lt200252-wcbart/pumet/models/Qwen3-32B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-522/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /project/lt200252-wcbart/pumet/models/Qwen3-32B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-522/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/project/lt200252-wcbart/pumet/models/Qwen3-32B",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 16,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 8,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "q_proj",
28
+ "down_proj",
29
+ "gate_proj",
30
+ "o_proj",
31
+ "k_proj",
32
+ "up_proj",
33
+ "v_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-522/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
checkpoint-522/chat_template.jinja ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0].role == 'system' %}
4
+ {{- messages[0].content + '\n\n' }}
5
+ {%- endif %}
6
+ {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
7
+ {%- for tool in tools %}
8
+ {{- "\n" }}
9
+ {{- tool | tojson }}
10
+ {%- endfor %}
11
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
12
+ {%- else %}
13
+ {%- if messages[0].role == 'system' %}
14
+ {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
15
+ {%- endif %}
16
+ {%- endif %}
17
+ {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
18
+ {%- for message in messages[::-1] %}
19
+ {%- set index = (messages|length - 1) - loop.index0 %}
20
+ {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
21
+ {%- set ns.multi_step_tool = false %}
22
+ {%- set ns.last_query_index = index %}
23
+ {%- endif %}
24
+ {%- endfor %}
25
+ {%- for message in messages %}
26
+ {%- if message.content is string %}
27
+ {%- set content = message.content %}
28
+ {%- else %}
29
+ {%- set content = '' %}
30
+ {%- endif %}
31
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
32
+ {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
33
+ {%- elif message.role == "assistant" %}
34
+ {%- set reasoning_content = '' %}
35
+ {%- if message.reasoning_content is string %}
36
+ {%- set reasoning_content = message.reasoning_content %}
37
+ {%- else %}
38
+ {%- if '</think>' in content %}
39
+ {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
40
+ {%- set content = content.split('</think>')[-1].lstrip('\n') %}
41
+ {%- endif %}
42
+ {%- endif %}
43
+ {%- if loop.index0 > ns.last_query_index %}
44
+ {%- if loop.last or (not loop.last and reasoning_content) %}
45
+ {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
46
+ {%- else %}
47
+ {{- '<|im_start|>' + message.role + '\n' + content }}
48
+ {%- endif %}
49
+ {%- else %}
50
+ {{- '<|im_start|>' + message.role + '\n' + content }}
51
+ {%- endif %}
52
+ {%- if message.tool_calls %}
53
+ {%- for tool_call in message.tool_calls %}
54
+ {%- if (loop.first and content) or (not loop.first) %}
55
+ {{- '\n' }}
56
+ {%- endif %}
57
+ {%- if tool_call.function %}
58
+ {%- set tool_call = tool_call.function %}
59
+ {%- endif %}
60
+ {{- '<tool_call>\n{"name": "' }}
61
+ {{- tool_call.name }}
62
+ {{- '", "arguments": ' }}
63
+ {%- if tool_call.arguments is string %}
64
+ {{- tool_call.arguments }}
65
+ {%- else %}
66
+ {{- tool_call.arguments | tojson }}
67
+ {%- endif %}
68
+ {{- '}\n</tool_call>' }}
69
+ {%- endfor %}
70
+ {%- endif %}
71
+ {{- '<|im_end|>\n' }}
72
+ {%- elif message.role == "tool" %}
73
+ {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
74
+ {{- '<|im_start|>user' }}
75
+ {%- endif %}
76
+ {{- '\n<tool_response>\n' }}
77
+ {{- content }}
78
+ {{- '\n</tool_response>' }}
79
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
80
+ {{- '<|im_end|>\n' }}
81
+ {%- endif %}
82
+ {%- endif %}
83
+ {%- endfor %}
84
+ {%- if add_generation_prompt %}
85
+ {{- '<|im_start|>assistant\n' }}
86
+ {%- if enable_thinking is defined and enable_thinking is false %}
87
+ {{- '<think>\n\n</think>\n\n' }}
88
+ {%- endif %}
89
+ {%- endif %}
checkpoint-522/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-522/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-522/tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "padding_side": "right",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
checkpoint-522/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-522/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 25600,
14
+ "max_position_embeddings": 40960,
15
+ "max_window_layers": 64,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 64,
18
+ "num_hidden_layers": 64,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.52.3",
27
+ "use_cache": true,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
dataset/dataset_dict.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"splits": ["train", "validation"]}
eval_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_loss": 0.6412659883499146,
4
+ "eval_runtime": 413.4377,
5
+ "eval_samples_per_second": 23.941,
6
+ "eval_steps_per_second": 0.375
7
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.52.3"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00027.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:504d2a880eebf9b143a30dcee5b771d2b0a4ad4982aa67a7849ebe679100b359
3
+ size 4537714712
model-00004-of-00027.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7726306ad162c12b6fe9a615896af1d06c2b5581c9b25fb646ae6b38ad0b8db
3
+ size 4802607584
model-00006-of-00027.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29eeb9e343d96cedec2c28dec7f71703f9f12084c7d046e4bb26de9e0f1d33b8
3
+ size 4802607616
model-00012-of-00027.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04f765b7ef6326108452139580cbe065fc7c1e6ca1040d499bd534283e86657d
3
+ size 4802607616
model-00019-of-00027.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e008b34e332710bedc58b86092567a92c6a62734a08970d679cadf36b49081f9
3
+ size 4949365464
model-00024-of-00027.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9945bae5807983b82092dacff21e6623153cdef5ce9b208b1d7533ed01e8837
3
+ size 4802607616
model-00025-of-00027.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a311443c000b751b73a686c3a7dc57a71fa4ccbc9f9300ad941e3c637e6ecc5
3
+ size 4949365464
model-00026-of-00027.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32c6459a0da2199f179dd2b694a035273ee9dc85753f8b8e3bc461b8653a84a4
3
+ size 4802607616
model.safetensors.index.json ADDED
@@ -0,0 +1,714 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 131048493056
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00027-of-00027.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00027.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00002-of-00027.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00002-of-00027.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00027.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00027.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00002-of-00027.safetensors",
13
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00027.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00027.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00027.safetensors",
16
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00027.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00027.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00027.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00027.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00002-of-00027.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00002-of-00027.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00002-of-00027.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00027.safetensors",
24
+ "model.layers.1.self_attn.k_norm.weight": "model-00002-of-00027.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00002-of-00027.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00002-of-00027.safetensors",
27
+ "model.layers.1.self_attn.q_norm.weight": "model-00002-of-00027.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00002-of-00027.safetensors",
29
+ "model.layers.1.self_attn.v_proj.weight": "model-00002-of-00027.safetensors",
30
+ "model.layers.10.input_layernorm.weight": "model-00006-of-00027.safetensors",
31
+ "model.layers.10.mlp.down_proj.weight": "model-00006-of-00027.safetensors",
32
+ "model.layers.10.mlp.gate_proj.weight": "model-00005-of-00027.safetensors",
33
+ "model.layers.10.mlp.up_proj.weight": "model-00005-of-00027.safetensors",
34
+ "model.layers.10.post_attention_layernorm.weight": "model-00006-of-00027.safetensors",
35
+ "model.layers.10.self_attn.k_norm.weight": "model-00005-of-00027.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00005-of-00027.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00005-of-00027.safetensors",
38
+ "model.layers.10.self_attn.q_norm.weight": "model-00005-of-00027.safetensors",
39
+ "model.layers.10.self_attn.q_proj.weight": "model-00005-of-00027.safetensors",
40
+ "model.layers.10.self_attn.v_proj.weight": "model-00005-of-00027.safetensors",
41
+ "model.layers.11.input_layernorm.weight": "model-00006-of-00027.safetensors",
42
+ "model.layers.11.mlp.down_proj.weight": "model-00006-of-00027.safetensors",
43
+ "model.layers.11.mlp.gate_proj.weight": "model-00006-of-00027.safetensors",
44
+ "model.layers.11.mlp.up_proj.weight": "model-00006-of-00027.safetensors",
45
+ "model.layers.11.post_attention_layernorm.weight": "model-00006-of-00027.safetensors",
46
+ "model.layers.11.self_attn.k_norm.weight": "model-00006-of-00027.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00006-of-00027.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00006-of-00027.safetensors",
49
+ "model.layers.11.self_attn.q_norm.weight": "model-00006-of-00027.safetensors",
50
+ "model.layers.11.self_attn.q_proj.weight": "model-00006-of-00027.safetensors",
51
+ "model.layers.11.self_attn.v_proj.weight": "model-00006-of-00027.safetensors",
52
+ "model.layers.12.input_layernorm.weight": "model-00006-of-00027.safetensors",
53
+ "model.layers.12.mlp.down_proj.weight": "model-00006-of-00027.safetensors",
54
+ "model.layers.12.mlp.gate_proj.weight": "model-00006-of-00027.safetensors",
55
+ "model.layers.12.mlp.up_proj.weight": "model-00006-of-00027.safetensors",
56
+ "model.layers.12.post_attention_layernorm.weight": "model-00006-of-00027.safetensors",
57
+ "model.layers.12.self_attn.k_norm.weight": "model-00006-of-00027.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00006-of-00027.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00006-of-00027.safetensors",
60
+ "model.layers.12.self_attn.q_norm.weight": "model-00006-of-00027.safetensors",
61
+ "model.layers.12.self_attn.q_proj.weight": "model-00006-of-00027.safetensors",
62
+ "model.layers.12.self_attn.v_proj.weight": "model-00006-of-00027.safetensors",
63
+ "model.layers.13.input_layernorm.weight": "model-00007-of-00027.safetensors",
64
+ "model.layers.13.mlp.down_proj.weight": "model-00007-of-00027.safetensors",
65
+ "model.layers.13.mlp.gate_proj.weight": "model-00007-of-00027.safetensors",
66
+ "model.layers.13.mlp.up_proj.weight": "model-00007-of-00027.safetensors",
67
+ "model.layers.13.post_attention_layernorm.weight": "model-00007-of-00027.safetensors",
68
+ "model.layers.13.self_attn.k_norm.weight": "model-00006-of-00027.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00006-of-00027.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00006-of-00027.safetensors",
71
+ "model.layers.13.self_attn.q_norm.weight": "model-00006-of-00027.safetensors",
72
+ "model.layers.13.self_attn.q_proj.weight": "model-00006-of-00027.safetensors",
73
+ "model.layers.13.self_attn.v_proj.weight": "model-00006-of-00027.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00007-of-00027.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00007-of-00027.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00007-of-00027.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00007-of-00027.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00007-of-00027.safetensors",
79
+ "model.layers.14.self_attn.k_norm.weight": "model-00007-of-00027.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00007-of-00027.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00007-of-00027.safetensors",
82
+ "model.layers.14.self_attn.q_norm.weight": "model-00007-of-00027.safetensors",
83
+ "model.layers.14.self_attn.q_proj.weight": "model-00007-of-00027.safetensors",
84
+ "model.layers.14.self_attn.v_proj.weight": "model-00007-of-00027.safetensors",
85
+ "model.layers.15.input_layernorm.weight": "model-00008-of-00027.safetensors",
86
+ "model.layers.15.mlp.down_proj.weight": "model-00008-of-00027.safetensors",
87
+ "model.layers.15.mlp.gate_proj.weight": "model-00007-of-00027.safetensors",
88
+ "model.layers.15.mlp.up_proj.weight": "model-00007-of-00027.safetensors",
89
+ "model.layers.15.post_attention_layernorm.weight": "model-00008-of-00027.safetensors",
90
+ "model.layers.15.self_attn.k_norm.weight": "model-00007-of-00027.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00007-of-00027.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00007-of-00027.safetensors",
93
+ "model.layers.15.self_attn.q_norm.weight": "model-00007-of-00027.safetensors",
94
+ "model.layers.15.self_attn.q_proj.weight": "model-00007-of-00027.safetensors",
95
+ "model.layers.15.self_attn.v_proj.weight": "model-00007-of-00027.safetensors",
96
+ "model.layers.16.input_layernorm.weight": "model-00008-of-00027.safetensors",
97
+ "model.layers.16.mlp.down_proj.weight": "model-00008-of-00027.safetensors",
98
+ "model.layers.16.mlp.gate_proj.weight": "model-00008-of-00027.safetensors",
99
+ "model.layers.16.mlp.up_proj.weight": "model-00008-of-00027.safetensors",
100
+ "model.layers.16.post_attention_layernorm.weight": "model-00008-of-00027.safetensors",
101
+ "model.layers.16.self_attn.k_norm.weight": "model-00008-of-00027.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00008-of-00027.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00008-of-00027.safetensors",
104
+ "model.layers.16.self_attn.q_norm.weight": "model-00008-of-00027.safetensors",
105
+ "model.layers.16.self_attn.q_proj.weight": "model-00008-of-00027.safetensors",
106
+ "model.layers.16.self_attn.v_proj.weight": "model-00008-of-00027.safetensors",
107
+ "model.layers.17.input_layernorm.weight": "model-00008-of-00027.safetensors",
108
+ "model.layers.17.mlp.down_proj.weight": "model-00008-of-00027.safetensors",
109
+ "model.layers.17.mlp.gate_proj.weight": "model-00008-of-00027.safetensors",
110
+ "model.layers.17.mlp.up_proj.weight": "model-00008-of-00027.safetensors",
111
+ "model.layers.17.post_attention_layernorm.weight": "model-00008-of-00027.safetensors",
112
+ "model.layers.17.self_attn.k_norm.weight": "model-00008-of-00027.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00008-of-00027.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00008-of-00027.safetensors",
115
+ "model.layers.17.self_attn.q_norm.weight": "model-00008-of-00027.safetensors",
116
+ "model.layers.17.self_attn.q_proj.weight": "model-00008-of-00027.safetensors",
117
+ "model.layers.17.self_attn.v_proj.weight": "model-00008-of-00027.safetensors",
118
+ "model.layers.18.input_layernorm.weight": "model-00009-of-00027.safetensors",
119
+ "model.layers.18.mlp.down_proj.weight": "model-00009-of-00027.safetensors",
120
+ "model.layers.18.mlp.gate_proj.weight": "model-00009-of-00027.safetensors",
121
+ "model.layers.18.mlp.up_proj.weight": "model-00009-of-00027.safetensors",
122
+ "model.layers.18.post_attention_layernorm.weight": "model-00009-of-00027.safetensors",
123
+ "model.layers.18.self_attn.k_norm.weight": "model-00008-of-00027.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00008-of-00027.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00008-of-00027.safetensors",
126
+ "model.layers.18.self_attn.q_norm.weight": "model-00008-of-00027.safetensors",
127
+ "model.layers.18.self_attn.q_proj.weight": "model-00008-of-00027.safetensors",
128
+ "model.layers.18.self_attn.v_proj.weight": "model-00008-of-00027.safetensors",
129
+ "model.layers.19.input_layernorm.weight": "model-00009-of-00027.safetensors",
130
+ "model.layers.19.mlp.down_proj.weight": "model-00009-of-00027.safetensors",
131
+ "model.layers.19.mlp.gate_proj.weight": "model-00009-of-00027.safetensors",
132
+ "model.layers.19.mlp.up_proj.weight": "model-00009-of-00027.safetensors",
133
+ "model.layers.19.post_attention_layernorm.weight": "model-00009-of-00027.safetensors",
134
+ "model.layers.19.self_attn.k_norm.weight": "model-00009-of-00027.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00009-of-00027.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00009-of-00027.safetensors",
137
+ "model.layers.19.self_attn.q_norm.weight": "model-00009-of-00027.safetensors",
138
+ "model.layers.19.self_attn.q_proj.weight": "model-00009-of-00027.safetensors",
139
+ "model.layers.19.self_attn.v_proj.weight": "model-00009-of-00027.safetensors",
140
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00027.safetensors",
141
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00027.safetensors",
142
+ "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00027.safetensors",
143
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00027.safetensors",
144
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00027.safetensors",
145
+ "model.layers.2.self_attn.k_norm.weight": "model-00002-of-00027.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00027.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00027.safetensors",
148
+ "model.layers.2.self_attn.q_norm.weight": "model-00002-of-00027.safetensors",
149
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00027.safetensors",
150
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00027.safetensors",
151
+ "model.layers.20.input_layernorm.weight": "model-00010-of-00027.safetensors",
152
+ "model.layers.20.mlp.down_proj.weight": "model-00010-of-00027.safetensors",
153
+ "model.layers.20.mlp.gate_proj.weight": "model-00009-of-00027.safetensors",
154
+ "model.layers.20.mlp.up_proj.weight": "model-00009-of-00027.safetensors",
155
+ "model.layers.20.post_attention_layernorm.weight": "model-00010-of-00027.safetensors",
156
+ "model.layers.20.self_attn.k_norm.weight": "model-00009-of-00027.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00009-of-00027.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00009-of-00027.safetensors",
159
+ "model.layers.20.self_attn.q_norm.weight": "model-00009-of-00027.safetensors",
160
+ "model.layers.20.self_attn.q_proj.weight": "model-00009-of-00027.safetensors",
161
+ "model.layers.20.self_attn.v_proj.weight": "model-00009-of-00027.safetensors",
162
+ "model.layers.21.input_layernorm.weight": "model-00010-of-00027.safetensors",
163
+ "model.layers.21.mlp.down_proj.weight": "model-00010-of-00027.safetensors",
164
+ "model.layers.21.mlp.gate_proj.weight": "model-00010-of-00027.safetensors",
165
+ "model.layers.21.mlp.up_proj.weight": "model-00010-of-00027.safetensors",
166
+ "model.layers.21.post_attention_layernorm.weight": "model-00010-of-00027.safetensors",
167
+ "model.layers.21.self_attn.k_norm.weight": "model-00010-of-00027.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00010-of-00027.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00010-of-00027.safetensors",
170
+ "model.layers.21.self_attn.q_norm.weight": "model-00010-of-00027.safetensors",
171
+ "model.layers.21.self_attn.q_proj.weight": "model-00010-of-00027.safetensors",
172
+ "model.layers.21.self_attn.v_proj.weight": "model-00010-of-00027.safetensors",
173
+ "model.layers.22.input_layernorm.weight": "model-00010-of-00027.safetensors",
174
+ "model.layers.22.mlp.down_proj.weight": "model-00010-of-00027.safetensors",
175
+ "model.layers.22.mlp.gate_proj.weight": "model-00010-of-00027.safetensors",
176
+ "model.layers.22.mlp.up_proj.weight": "model-00010-of-00027.safetensors",
177
+ "model.layers.22.post_attention_layernorm.weight": "model-00010-of-00027.safetensors",
178
+ "model.layers.22.self_attn.k_norm.weight": "model-00010-of-00027.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00010-of-00027.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00010-of-00027.safetensors",
181
+ "model.layers.22.self_attn.q_norm.weight": "model-00010-of-00027.safetensors",
182
+ "model.layers.22.self_attn.q_proj.weight": "model-00010-of-00027.safetensors",
183
+ "model.layers.22.self_attn.v_proj.weight": "model-00010-of-00027.safetensors",
184
+ "model.layers.23.input_layernorm.weight": "model-00011-of-00027.safetensors",
185
+ "model.layers.23.mlp.down_proj.weight": "model-00011-of-00027.safetensors",
186
+ "model.layers.23.mlp.gate_proj.weight": "model-00011-of-00027.safetensors",
187
+ "model.layers.23.mlp.up_proj.weight": "model-00011-of-00027.safetensors",
188
+ "model.layers.23.post_attention_layernorm.weight": "model-00011-of-00027.safetensors",
189
+ "model.layers.23.self_attn.k_norm.weight": "model-00010-of-00027.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00010-of-00027.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00010-of-00027.safetensors",
192
+ "model.layers.23.self_attn.q_norm.weight": "model-00010-of-00027.safetensors",
193
+ "model.layers.23.self_attn.q_proj.weight": "model-00010-of-00027.safetensors",
194
+ "model.layers.23.self_attn.v_proj.weight": "model-00010-of-00027.safetensors",
195
+ "model.layers.24.input_layernorm.weight": "model-00011-of-00027.safetensors",
196
+ "model.layers.24.mlp.down_proj.weight": "model-00011-of-00027.safetensors",
197
+ "model.layers.24.mlp.gate_proj.weight": "model-00011-of-00027.safetensors",
198
+ "model.layers.24.mlp.up_proj.weight": "model-00011-of-00027.safetensors",
199
+ "model.layers.24.post_attention_layernorm.weight": "model-00011-of-00027.safetensors",
200
+ "model.layers.24.self_attn.k_norm.weight": "model-00011-of-00027.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00011-of-00027.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00011-of-00027.safetensors",
203
+ "model.layers.24.self_attn.q_norm.weight": "model-00011-of-00027.safetensors",
204
+ "model.layers.24.self_attn.q_proj.weight": "model-00011-of-00027.safetensors",
205
+ "model.layers.24.self_attn.v_proj.weight": "model-00011-of-00027.safetensors",
206
+ "model.layers.25.input_layernorm.weight": "model-00012-of-00027.safetensors",
207
+ "model.layers.25.mlp.down_proj.weight": "model-00012-of-00027.safetensors",
208
+ "model.layers.25.mlp.gate_proj.weight": "model-00011-of-00027.safetensors",
209
+ "model.layers.25.mlp.up_proj.weight": "model-00011-of-00027.safetensors",
210
+ "model.layers.25.post_attention_layernorm.weight": "model-00012-of-00027.safetensors",
211
+ "model.layers.25.self_attn.k_norm.weight": "model-00011-of-00027.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00011-of-00027.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00011-of-00027.safetensors",
214
+ "model.layers.25.self_attn.q_norm.weight": "model-00011-of-00027.safetensors",
215
+ "model.layers.25.self_attn.q_proj.weight": "model-00011-of-00027.safetensors",
216
+ "model.layers.25.self_attn.v_proj.weight": "model-00011-of-00027.safetensors",
217
+ "model.layers.26.input_layernorm.weight": "model-00012-of-00027.safetensors",
218
+ "model.layers.26.mlp.down_proj.weight": "model-00012-of-00027.safetensors",
219
+ "model.layers.26.mlp.gate_proj.weight": "model-00012-of-00027.safetensors",
220
+ "model.layers.26.mlp.up_proj.weight": "model-00012-of-00027.safetensors",
221
+ "model.layers.26.post_attention_layernorm.weight": "model-00012-of-00027.safetensors",
222
+ "model.layers.26.self_attn.k_norm.weight": "model-00012-of-00027.safetensors",
223
+ "model.layers.26.self_attn.k_proj.weight": "model-00012-of-00027.safetensors",
224
+ "model.layers.26.self_attn.o_proj.weight": "model-00012-of-00027.safetensors",
225
+ "model.layers.26.self_attn.q_norm.weight": "model-00012-of-00027.safetensors",
226
+ "model.layers.26.self_attn.q_proj.weight": "model-00012-of-00027.safetensors",
227
+ "model.layers.26.self_attn.v_proj.weight": "model-00012-of-00027.safetensors",
228
+ "model.layers.27.input_layernorm.weight": "model-00012-of-00027.safetensors",
229
+ "model.layers.27.mlp.down_proj.weight": "model-00012-of-00027.safetensors",
230
+ "model.layers.27.mlp.gate_proj.weight": "model-00012-of-00027.safetensors",
231
+ "model.layers.27.mlp.up_proj.weight": "model-00012-of-00027.safetensors",
232
+ "model.layers.27.post_attention_layernorm.weight": "model-00012-of-00027.safetensors",
233
+ "model.layers.27.self_attn.k_norm.weight": "model-00012-of-00027.safetensors",
234
+ "model.layers.27.self_attn.k_proj.weight": "model-00012-of-00027.safetensors",
235
+ "model.layers.27.self_attn.o_proj.weight": "model-00012-of-00027.safetensors",
236
+ "model.layers.27.self_attn.q_norm.weight": "model-00012-of-00027.safetensors",
237
+ "model.layers.27.self_attn.q_proj.weight": "model-00012-of-00027.safetensors",
238
+ "model.layers.27.self_attn.v_proj.weight": "model-00012-of-00027.safetensors",
239
+ "model.layers.28.input_layernorm.weight": "model-00013-of-00027.safetensors",
240
+ "model.layers.28.mlp.down_proj.weight": "model-00013-of-00027.safetensors",
241
+ "model.layers.28.mlp.gate_proj.weight": "model-00013-of-00027.safetensors",
242
+ "model.layers.28.mlp.up_proj.weight": "model-00013-of-00027.safetensors",
243
+ "model.layers.28.post_attention_layernorm.weight": "model-00013-of-00027.safetensors",
244
+ "model.layers.28.self_attn.k_norm.weight": "model-00012-of-00027.safetensors",
245
+ "model.layers.28.self_attn.k_proj.weight": "model-00012-of-00027.safetensors",
246
+ "model.layers.28.self_attn.o_proj.weight": "model-00012-of-00027.safetensors",
247
+ "model.layers.28.self_attn.q_norm.weight": "model-00012-of-00027.safetensors",
248
+ "model.layers.28.self_attn.q_proj.weight": "model-00012-of-00027.safetensors",
249
+ "model.layers.28.self_attn.v_proj.weight": "model-00012-of-00027.safetensors",
250
+ "model.layers.29.input_layernorm.weight": "model-00013-of-00027.safetensors",
251
+ "model.layers.29.mlp.down_proj.weight": "model-00013-of-00027.safetensors",
252
+ "model.layers.29.mlp.gate_proj.weight": "model-00013-of-00027.safetensors",
253
+ "model.layers.29.mlp.up_proj.weight": "model-00013-of-00027.safetensors",
254
+ "model.layers.29.post_attention_layernorm.weight": "model-00013-of-00027.safetensors",
255
+ "model.layers.29.self_attn.k_norm.weight": "model-00013-of-00027.safetensors",
256
+ "model.layers.29.self_attn.k_proj.weight": "model-00013-of-00027.safetensors",
257
+ "model.layers.29.self_attn.o_proj.weight": "model-00013-of-00027.safetensors",
258
+ "model.layers.29.self_attn.q_norm.weight": "model-00013-of-00027.safetensors",
259
+ "model.layers.29.self_attn.q_proj.weight": "model-00013-of-00027.safetensors",
260
+ "model.layers.29.self_attn.v_proj.weight": "model-00013-of-00027.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00003-of-00027.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00003-of-00027.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00003-of-00027.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00003-of-00027.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00003-of-00027.safetensors",
266
+ "model.layers.3.self_attn.k_norm.weight": "model-00002-of-00027.safetensors",
267
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00027.safetensors",
268
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00027.safetensors",
269
+ "model.layers.3.self_attn.q_norm.weight": "model-00002-of-00027.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00027.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00027.safetensors",
272
+ "model.layers.30.input_layernorm.weight": "model-00014-of-00027.safetensors",
273
+ "model.layers.30.mlp.down_proj.weight": "model-00014-of-00027.safetensors",
274
+ "model.layers.30.mlp.gate_proj.weight": "model-00013-of-00027.safetensors",
275
+ "model.layers.30.mlp.up_proj.weight": "model-00013-of-00027.safetensors",
276
+ "model.layers.30.post_attention_layernorm.weight": "model-00014-of-00027.safetensors",
277
+ "model.layers.30.self_attn.k_norm.weight": "model-00013-of-00027.safetensors",
278
+ "model.layers.30.self_attn.k_proj.weight": "model-00013-of-00027.safetensors",
279
+ "model.layers.30.self_attn.o_proj.weight": "model-00013-of-00027.safetensors",
280
+ "model.layers.30.self_attn.q_norm.weight": "model-00013-of-00027.safetensors",
281
+ "model.layers.30.self_attn.q_proj.weight": "model-00013-of-00027.safetensors",
282
+ "model.layers.30.self_attn.v_proj.weight": "model-00013-of-00027.safetensors",
283
+ "model.layers.31.input_layernorm.weight": "model-00014-of-00027.safetensors",
284
+ "model.layers.31.mlp.down_proj.weight": "model-00014-of-00027.safetensors",
285
+ "model.layers.31.mlp.gate_proj.weight": "model-00014-of-00027.safetensors",
286
+ "model.layers.31.mlp.up_proj.weight": "model-00014-of-00027.safetensors",
287
+ "model.layers.31.post_attention_layernorm.weight": "model-00014-of-00027.safetensors",
288
+ "model.layers.31.self_attn.k_norm.weight": "model-00014-of-00027.safetensors",
289
+ "model.layers.31.self_attn.k_proj.weight": "model-00014-of-00027.safetensors",
290
+ "model.layers.31.self_attn.o_proj.weight": "model-00014-of-00027.safetensors",
291
+ "model.layers.31.self_attn.q_norm.weight": "model-00014-of-00027.safetensors",
292
+ "model.layers.31.self_attn.q_proj.weight": "model-00014-of-00027.safetensors",
293
+ "model.layers.31.self_attn.v_proj.weight": "model-00014-of-00027.safetensors",
294
+ "model.layers.32.input_layernorm.weight": "model-00014-of-00027.safetensors",
295
+ "model.layers.32.mlp.down_proj.weight": "model-00014-of-00027.safetensors",
296
+ "model.layers.32.mlp.gate_proj.weight": "model-00014-of-00027.safetensors",
297
+ "model.layers.32.mlp.up_proj.weight": "model-00014-of-00027.safetensors",
298
+ "model.layers.32.post_attention_layernorm.weight": "model-00014-of-00027.safetensors",
299
+ "model.layers.32.self_attn.k_norm.weight": "model-00014-of-00027.safetensors",
300
+ "model.layers.32.self_attn.k_proj.weight": "model-00014-of-00027.safetensors",
301
+ "model.layers.32.self_attn.o_proj.weight": "model-00014-of-00027.safetensors",
302
+ "model.layers.32.self_attn.q_norm.weight": "model-00014-of-00027.safetensors",
303
+ "model.layers.32.self_attn.q_proj.weight": "model-00014-of-00027.safetensors",
304
+ "model.layers.32.self_attn.v_proj.weight": "model-00014-of-00027.safetensors",
305
+ "model.layers.33.input_layernorm.weight": "model-00015-of-00027.safetensors",
306
+ "model.layers.33.mlp.down_proj.weight": "model-00015-of-00027.safetensors",
307
+ "model.layers.33.mlp.gate_proj.weight": "model-00015-of-00027.safetensors",
308
+ "model.layers.33.mlp.up_proj.weight": "model-00015-of-00027.safetensors",
309
+ "model.layers.33.post_attention_layernorm.weight": "model-00015-of-00027.safetensors",
310
+ "model.layers.33.self_attn.k_norm.weight": "model-00014-of-00027.safetensors",
311
+ "model.layers.33.self_attn.k_proj.weight": "model-00014-of-00027.safetensors",
312
+ "model.layers.33.self_attn.o_proj.weight": "model-00014-of-00027.safetensors",
313
+ "model.layers.33.self_attn.q_norm.weight": "model-00014-of-00027.safetensors",
314
+ "model.layers.33.self_attn.q_proj.weight": "model-00014-of-00027.safetensors",
315
+ "model.layers.33.self_attn.v_proj.weight": "model-00014-of-00027.safetensors",
316
+ "model.layers.34.input_layernorm.weight": "model-00015-of-00027.safetensors",
317
+ "model.layers.34.mlp.down_proj.weight": "model-00015-of-00027.safetensors",
318
+ "model.layers.34.mlp.gate_proj.weight": "model-00015-of-00027.safetensors",
319
+ "model.layers.34.mlp.up_proj.weight": "model-00015-of-00027.safetensors",
320
+ "model.layers.34.post_attention_layernorm.weight": "model-00015-of-00027.safetensors",
321
+ "model.layers.34.self_attn.k_norm.weight": "model-00015-of-00027.safetensors",
322
+ "model.layers.34.self_attn.k_proj.weight": "model-00015-of-00027.safetensors",
323
+ "model.layers.34.self_attn.o_proj.weight": "model-00015-of-00027.safetensors",
324
+ "model.layers.34.self_attn.q_norm.weight": "model-00015-of-00027.safetensors",
325
+ "model.layers.34.self_attn.q_proj.weight": "model-00015-of-00027.safetensors",
326
+ "model.layers.34.self_attn.v_proj.weight": "model-00015-of-00027.safetensors",
327
+ "model.layers.35.input_layernorm.weight": "model-00016-of-00027.safetensors",
328
+ "model.layers.35.mlp.down_proj.weight": "model-00016-of-00027.safetensors",
329
+ "model.layers.35.mlp.gate_proj.weight": "model-00015-of-00027.safetensors",
330
+ "model.layers.35.mlp.up_proj.weight": "model-00015-of-00027.safetensors",
331
+ "model.layers.35.post_attention_layernorm.weight": "model-00016-of-00027.safetensors",
332
+ "model.layers.35.self_attn.k_norm.weight": "model-00015-of-00027.safetensors",
333
+ "model.layers.35.self_attn.k_proj.weight": "model-00015-of-00027.safetensors",
334
+ "model.layers.35.self_attn.o_proj.weight": "model-00015-of-00027.safetensors",
335
+ "model.layers.35.self_attn.q_norm.weight": "model-00015-of-00027.safetensors",
336
+ "model.layers.35.self_attn.q_proj.weight": "model-00015-of-00027.safetensors",
337
+ "model.layers.35.self_attn.v_proj.weight": "model-00015-of-00027.safetensors",
338
+ "model.layers.36.input_layernorm.weight": "model-00016-of-00027.safetensors",
339
+ "model.layers.36.mlp.down_proj.weight": "model-00016-of-00027.safetensors",
340
+ "model.layers.36.mlp.gate_proj.weight": "model-00016-of-00027.safetensors",
341
+ "model.layers.36.mlp.up_proj.weight": "model-00016-of-00027.safetensors",
342
+ "model.layers.36.post_attention_layernorm.weight": "model-00016-of-00027.safetensors",
343
+ "model.layers.36.self_attn.k_norm.weight": "model-00016-of-00027.safetensors",
344
+ "model.layers.36.self_attn.k_proj.weight": "model-00016-of-00027.safetensors",
345
+ "model.layers.36.self_attn.o_proj.weight": "model-00016-of-00027.safetensors",
346
+ "model.layers.36.self_attn.q_norm.weight": "model-00016-of-00027.safetensors",
347
+ "model.layers.36.self_attn.q_proj.weight": "model-00016-of-00027.safetensors",
348
+ "model.layers.36.self_attn.v_proj.weight": "model-00016-of-00027.safetensors",
349
+ "model.layers.37.input_layernorm.weight": "model-00016-of-00027.safetensors",
350
+ "model.layers.37.mlp.down_proj.weight": "model-00016-of-00027.safetensors",
351
+ "model.layers.37.mlp.gate_proj.weight": "model-00016-of-00027.safetensors",
352
+ "model.layers.37.mlp.up_proj.weight": "model-00016-of-00027.safetensors",
353
+ "model.layers.37.post_attention_layernorm.weight": "model-00016-of-00027.safetensors",
354
+ "model.layers.37.self_attn.k_norm.weight": "model-00016-of-00027.safetensors",
355
+ "model.layers.37.self_attn.k_proj.weight": "model-00016-of-00027.safetensors",
356
+ "model.layers.37.self_attn.o_proj.weight": "model-00016-of-00027.safetensors",
357
+ "model.layers.37.self_attn.q_norm.weight": "model-00016-of-00027.safetensors",
358
+ "model.layers.37.self_attn.q_proj.weight": "model-00016-of-00027.safetensors",
359
+ "model.layers.37.self_attn.v_proj.weight": "model-00016-of-00027.safetensors",
360
+ "model.layers.38.input_layernorm.weight": "model-00017-of-00027.safetensors",
361
+ "model.layers.38.mlp.down_proj.weight": "model-00017-of-00027.safetensors",
362
+ "model.layers.38.mlp.gate_proj.weight": "model-00017-of-00027.safetensors",
363
+ "model.layers.38.mlp.up_proj.weight": "model-00017-of-00027.safetensors",
364
+ "model.layers.38.post_attention_layernorm.weight": "model-00017-of-00027.safetensors",
365
+ "model.layers.38.self_attn.k_norm.weight": "model-00016-of-00027.safetensors",
366
+ "model.layers.38.self_attn.k_proj.weight": "model-00016-of-00027.safetensors",
367
+ "model.layers.38.self_attn.o_proj.weight": "model-00016-of-00027.safetensors",
368
+ "model.layers.38.self_attn.q_norm.weight": "model-00016-of-00027.safetensors",
369
+ "model.layers.38.self_attn.q_proj.weight": "model-00016-of-00027.safetensors",
370
+ "model.layers.38.self_attn.v_proj.weight": "model-00016-of-00027.safetensors",
371
+ "model.layers.39.input_layernorm.weight": "model-00017-of-00027.safetensors",
372
+ "model.layers.39.mlp.down_proj.weight": "model-00017-of-00027.safetensors",
373
+ "model.layers.39.mlp.gate_proj.weight": "model-00017-of-00027.safetensors",
374
+ "model.layers.39.mlp.up_proj.weight": "model-00017-of-00027.safetensors",
375
+ "model.layers.39.post_attention_layernorm.weight": "model-00017-of-00027.safetensors",
376
+ "model.layers.39.self_attn.k_norm.weight": "model-00017-of-00027.safetensors",
377
+ "model.layers.39.self_attn.k_proj.weight": "model-00017-of-00027.safetensors",
378
+ "model.layers.39.self_attn.o_proj.weight": "model-00017-of-00027.safetensors",
379
+ "model.layers.39.self_attn.q_norm.weight": "model-00017-of-00027.safetensors",
380
+ "model.layers.39.self_attn.q_proj.weight": "model-00017-of-00027.safetensors",
381
+ "model.layers.39.self_attn.v_proj.weight": "model-00017-of-00027.safetensors",
382
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00027.safetensors",
383
+ "model.layers.4.mlp.down_proj.weight": "model-00003-of-00027.safetensors",
384
+ "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00027.safetensors",
385
+ "model.layers.4.mlp.up_proj.weight": "model-00003-of-00027.safetensors",
386
+ "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00027.safetensors",
387
+ "model.layers.4.self_attn.k_norm.weight": "model-00003-of-00027.safetensors",
388
+ "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00027.safetensors",
389
+ "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00027.safetensors",
390
+ "model.layers.4.self_attn.q_norm.weight": "model-00003-of-00027.safetensors",
391
+ "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00027.safetensors",
392
+ "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00027.safetensors",
393
+ "model.layers.40.input_layernorm.weight": "model-00018-of-00027.safetensors",
394
+ "model.layers.40.mlp.down_proj.weight": "model-00018-of-00027.safetensors",
395
+ "model.layers.40.mlp.gate_proj.weight": "model-00017-of-00027.safetensors",
396
+ "model.layers.40.mlp.up_proj.weight": "model-00017-of-00027.safetensors",
397
+ "model.layers.40.post_attention_layernorm.weight": "model-00018-of-00027.safetensors",
398
+ "model.layers.40.self_attn.k_norm.weight": "model-00017-of-00027.safetensors",
399
+ "model.layers.40.self_attn.k_proj.weight": "model-00017-of-00027.safetensors",
400
+ "model.layers.40.self_attn.o_proj.weight": "model-00017-of-00027.safetensors",
401
+ "model.layers.40.self_attn.q_norm.weight": "model-00017-of-00027.safetensors",
402
+ "model.layers.40.self_attn.q_proj.weight": "model-00017-of-00027.safetensors",
403
+ "model.layers.40.self_attn.v_proj.weight": "model-00017-of-00027.safetensors",
404
+ "model.layers.41.input_layernorm.weight": "model-00018-of-00027.safetensors",
405
+ "model.layers.41.mlp.down_proj.weight": "model-00018-of-00027.safetensors",
406
+ "model.layers.41.mlp.gate_proj.weight": "model-00018-of-00027.safetensors",
407
+ "model.layers.41.mlp.up_proj.weight": "model-00018-of-00027.safetensors",
408
+ "model.layers.41.post_attention_layernorm.weight": "model-00018-of-00027.safetensors",
409
+ "model.layers.41.self_attn.k_norm.weight": "model-00018-of-00027.safetensors",
410
+ "model.layers.41.self_attn.k_proj.weight": "model-00018-of-00027.safetensors",
411
+ "model.layers.41.self_attn.o_proj.weight": "model-00018-of-00027.safetensors",
412
+ "model.layers.41.self_attn.q_norm.weight": "model-00018-of-00027.safetensors",
413
+ "model.layers.41.self_attn.q_proj.weight": "model-00018-of-00027.safetensors",
414
+ "model.layers.41.self_attn.v_proj.weight": "model-00018-of-00027.safetensors",
415
+ "model.layers.42.input_layernorm.weight": "model-00018-of-00027.safetensors",
416
+ "model.layers.42.mlp.down_proj.weight": "model-00018-of-00027.safetensors",
417
+ "model.layers.42.mlp.gate_proj.weight": "model-00018-of-00027.safetensors",
418
+ "model.layers.42.mlp.up_proj.weight": "model-00018-of-00027.safetensors",
419
+ "model.layers.42.post_attention_layernorm.weight": "model-00018-of-00027.safetensors",
420
+ "model.layers.42.self_attn.k_norm.weight": "model-00018-of-00027.safetensors",
421
+ "model.layers.42.self_attn.k_proj.weight": "model-00018-of-00027.safetensors",
422
+ "model.layers.42.self_attn.o_proj.weight": "model-00018-of-00027.safetensors",
423
+ "model.layers.42.self_attn.q_norm.weight": "model-00018-of-00027.safetensors",
424
+ "model.layers.42.self_attn.q_proj.weight": "model-00018-of-00027.safetensors",
425
+ "model.layers.42.self_attn.v_proj.weight": "model-00018-of-00027.safetensors",
426
+ "model.layers.43.input_layernorm.weight": "model-00019-of-00027.safetensors",
427
+ "model.layers.43.mlp.down_proj.weight": "model-00019-of-00027.safetensors",
428
+ "model.layers.43.mlp.gate_proj.weight": "model-00019-of-00027.safetensors",
429
+ "model.layers.43.mlp.up_proj.weight": "model-00019-of-00027.safetensors",
430
+ "model.layers.43.post_attention_layernorm.weight": "model-00019-of-00027.safetensors",
431
+ "model.layers.43.self_attn.k_norm.weight": "model-00018-of-00027.safetensors",
432
+ "model.layers.43.self_attn.k_proj.weight": "model-00018-of-00027.safetensors",
433
+ "model.layers.43.self_attn.o_proj.weight": "model-00018-of-00027.safetensors",
434
+ "model.layers.43.self_attn.q_norm.weight": "model-00018-of-00027.safetensors",
435
+ "model.layers.43.self_attn.q_proj.weight": "model-00018-of-00027.safetensors",
436
+ "model.layers.43.self_attn.v_proj.weight": "model-00018-of-00027.safetensors",
437
+ "model.layers.44.input_layernorm.weight": "model-00019-of-00027.safetensors",
438
+ "model.layers.44.mlp.down_proj.weight": "model-00019-of-00027.safetensors",
439
+ "model.layers.44.mlp.gate_proj.weight": "model-00019-of-00027.safetensors",
440
+ "model.layers.44.mlp.up_proj.weight": "model-00019-of-00027.safetensors",
441
+ "model.layers.44.post_attention_layernorm.weight": "model-00019-of-00027.safetensors",
442
+ "model.layers.44.self_attn.k_norm.weight": "model-00019-of-00027.safetensors",
443
+ "model.layers.44.self_attn.k_proj.weight": "model-00019-of-00027.safetensors",
444
+ "model.layers.44.self_attn.o_proj.weight": "model-00019-of-00027.safetensors",
445
+ "model.layers.44.self_attn.q_norm.weight": "model-00019-of-00027.safetensors",
446
+ "model.layers.44.self_attn.q_proj.weight": "model-00019-of-00027.safetensors",
447
+ "model.layers.44.self_attn.v_proj.weight": "model-00019-of-00027.safetensors",
448
+ "model.layers.45.input_layernorm.weight": "model-00020-of-00027.safetensors",
449
+ "model.layers.45.mlp.down_proj.weight": "model-00020-of-00027.safetensors",
450
+ "model.layers.45.mlp.gate_proj.weight": "model-00019-of-00027.safetensors",
451
+ "model.layers.45.mlp.up_proj.weight": "model-00019-of-00027.safetensors",
452
+ "model.layers.45.post_attention_layernorm.weight": "model-00020-of-00027.safetensors",
453
+ "model.layers.45.self_attn.k_norm.weight": "model-00019-of-00027.safetensors",
454
+ "model.layers.45.self_attn.k_proj.weight": "model-00019-of-00027.safetensors",
455
+ "model.layers.45.self_attn.o_proj.weight": "model-00019-of-00027.safetensors",
456
+ "model.layers.45.self_attn.q_norm.weight": "model-00019-of-00027.safetensors",
457
+ "model.layers.45.self_attn.q_proj.weight": "model-00019-of-00027.safetensors",
458
+ "model.layers.45.self_attn.v_proj.weight": "model-00019-of-00027.safetensors",
459
+ "model.layers.46.input_layernorm.weight": "model-00020-of-00027.safetensors",
460
+ "model.layers.46.mlp.down_proj.weight": "model-00020-of-00027.safetensors",
461
+ "model.layers.46.mlp.gate_proj.weight": "model-00020-of-00027.safetensors",
462
+ "model.layers.46.mlp.up_proj.weight": "model-00020-of-00027.safetensors",
463
+ "model.layers.46.post_attention_layernorm.weight": "model-00020-of-00027.safetensors",
464
+ "model.layers.46.self_attn.k_norm.weight": "model-00020-of-00027.safetensors",
465
+ "model.layers.46.self_attn.k_proj.weight": "model-00020-of-00027.safetensors",
466
+ "model.layers.46.self_attn.o_proj.weight": "model-00020-of-00027.safetensors",
467
+ "model.layers.46.self_attn.q_norm.weight": "model-00020-of-00027.safetensors",
468
+ "model.layers.46.self_attn.q_proj.weight": "model-00020-of-00027.safetensors",
469
+ "model.layers.46.self_attn.v_proj.weight": "model-00020-of-00027.safetensors",
470
+ "model.layers.47.input_layernorm.weight": "model-00020-of-00027.safetensors",
471
+ "model.layers.47.mlp.down_proj.weight": "model-00020-of-00027.safetensors",
472
+ "model.layers.47.mlp.gate_proj.weight": "model-00020-of-00027.safetensors",
473
+ "model.layers.47.mlp.up_proj.weight": "model-00020-of-00027.safetensors",
474
+ "model.layers.47.post_attention_layernorm.weight": "model-00020-of-00027.safetensors",
475
+ "model.layers.47.self_attn.k_norm.weight": "model-00020-of-00027.safetensors",
476
+ "model.layers.47.self_attn.k_proj.weight": "model-00020-of-00027.safetensors",
477
+ "model.layers.47.self_attn.o_proj.weight": "model-00020-of-00027.safetensors",
478
+ "model.layers.47.self_attn.q_norm.weight": "model-00020-of-00027.safetensors",
479
+ "model.layers.47.self_attn.q_proj.weight": "model-00020-of-00027.safetensors",
480
+ "model.layers.47.self_attn.v_proj.weight": "model-00020-of-00027.safetensors",
481
+ "model.layers.48.input_layernorm.weight": "model-00021-of-00027.safetensors",
482
+ "model.layers.48.mlp.down_proj.weight": "model-00021-of-00027.safetensors",
483
+ "model.layers.48.mlp.gate_proj.weight": "model-00021-of-00027.safetensors",
484
+ "model.layers.48.mlp.up_proj.weight": "model-00021-of-00027.safetensors",
485
+ "model.layers.48.post_attention_layernorm.weight": "model-00021-of-00027.safetensors",
486
+ "model.layers.48.self_attn.k_norm.weight": "model-00020-of-00027.safetensors",
487
+ "model.layers.48.self_attn.k_proj.weight": "model-00020-of-00027.safetensors",
488
+ "model.layers.48.self_attn.o_proj.weight": "model-00020-of-00027.safetensors",
489
+ "model.layers.48.self_attn.q_norm.weight": "model-00020-of-00027.safetensors",
490
+ "model.layers.48.self_attn.q_proj.weight": "model-00020-of-00027.safetensors",
491
+ "model.layers.48.self_attn.v_proj.weight": "model-00020-of-00027.safetensors",
492
+ "model.layers.49.input_layernorm.weight": "model-00021-of-00027.safetensors",
493
+ "model.layers.49.mlp.down_proj.weight": "model-00021-of-00027.safetensors",
494
+ "model.layers.49.mlp.gate_proj.weight": "model-00021-of-00027.safetensors",
495
+ "model.layers.49.mlp.up_proj.weight": "model-00021-of-00027.safetensors",
496
+ "model.layers.49.post_attention_layernorm.weight": "model-00021-of-00027.safetensors",
497
+ "model.layers.49.self_attn.k_norm.weight": "model-00021-of-00027.safetensors",
498
+ "model.layers.49.self_attn.k_proj.weight": "model-00021-of-00027.safetensors",
499
+ "model.layers.49.self_attn.o_proj.weight": "model-00021-of-00027.safetensors",
500
+ "model.layers.49.self_attn.q_norm.weight": "model-00021-of-00027.safetensors",
501
+ "model.layers.49.self_attn.q_proj.weight": "model-00021-of-00027.safetensors",
502
+ "model.layers.49.self_attn.v_proj.weight": "model-00021-of-00027.safetensors",
503
+ "model.layers.5.input_layernorm.weight": "model-00004-of-00027.safetensors",
504
+ "model.layers.5.mlp.down_proj.weight": "model-00004-of-00027.safetensors",
505
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00027.safetensors",
506
+ "model.layers.5.mlp.up_proj.weight": "model-00003-of-00027.safetensors",
507
+ "model.layers.5.post_attention_layernorm.weight": "model-00004-of-00027.safetensors",
508
+ "model.layers.5.self_attn.k_norm.weight": "model-00003-of-00027.safetensors",
509
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00027.safetensors",
510
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00027.safetensors",
511
+ "model.layers.5.self_attn.q_norm.weight": "model-00003-of-00027.safetensors",
512
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00027.safetensors",
513
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00027.safetensors",
514
+ "model.layers.50.input_layernorm.weight": "model-00022-of-00027.safetensors",
515
+ "model.layers.50.mlp.down_proj.weight": "model-00022-of-00027.safetensors",
516
+ "model.layers.50.mlp.gate_proj.weight": "model-00021-of-00027.safetensors",
517
+ "model.layers.50.mlp.up_proj.weight": "model-00021-of-00027.safetensors",
518
+ "model.layers.50.post_attention_layernorm.weight": "model-00022-of-00027.safetensors",
519
+ "model.layers.50.self_attn.k_norm.weight": "model-00021-of-00027.safetensors",
520
+ "model.layers.50.self_attn.k_proj.weight": "model-00021-of-00027.safetensors",
521
+ "model.layers.50.self_attn.o_proj.weight": "model-00021-of-00027.safetensors",
522
+ "model.layers.50.self_attn.q_norm.weight": "model-00021-of-00027.safetensors",
523
+ "model.layers.50.self_attn.q_proj.weight": "model-00021-of-00027.safetensors",
524
+ "model.layers.50.self_attn.v_proj.weight": "model-00021-of-00027.safetensors",
525
+ "model.layers.51.input_layernorm.weight": "model-00022-of-00027.safetensors",
526
+ "model.layers.51.mlp.down_proj.weight": "model-00022-of-00027.safetensors",
527
+ "model.layers.51.mlp.gate_proj.weight": "model-00022-of-00027.safetensors",
528
+ "model.layers.51.mlp.up_proj.weight": "model-00022-of-00027.safetensors",
529
+ "model.layers.51.post_attention_layernorm.weight": "model-00022-of-00027.safetensors",
530
+ "model.layers.51.self_attn.k_norm.weight": "model-00022-of-00027.safetensors",
531
+ "model.layers.51.self_attn.k_proj.weight": "model-00022-of-00027.safetensors",
532
+ "model.layers.51.self_attn.o_proj.weight": "model-00022-of-00027.safetensors",
533
+ "model.layers.51.self_attn.q_norm.weight": "model-00022-of-00027.safetensors",
534
+ "model.layers.51.self_attn.q_proj.weight": "model-00022-of-00027.safetensors",
535
+ "model.layers.51.self_attn.v_proj.weight": "model-00022-of-00027.safetensors",
536
+ "model.layers.52.input_layernorm.weight": "model-00022-of-00027.safetensors",
537
+ "model.layers.52.mlp.down_proj.weight": "model-00022-of-00027.safetensors",
538
+ "model.layers.52.mlp.gate_proj.weight": "model-00022-of-00027.safetensors",
539
+ "model.layers.52.mlp.up_proj.weight": "model-00022-of-00027.safetensors",
540
+ "model.layers.52.post_attention_layernorm.weight": "model-00022-of-00027.safetensors",
541
+ "model.layers.52.self_attn.k_norm.weight": "model-00022-of-00027.safetensors",
542
+ "model.layers.52.self_attn.k_proj.weight": "model-00022-of-00027.safetensors",
543
+ "model.layers.52.self_attn.o_proj.weight": "model-00022-of-00027.safetensors",
544
+ "model.layers.52.self_attn.q_norm.weight": "model-00022-of-00027.safetensors",
545
+ "model.layers.52.self_attn.q_proj.weight": "model-00022-of-00027.safetensors",
546
+ "model.layers.52.self_attn.v_proj.weight": "model-00022-of-00027.safetensors",
547
+ "model.layers.53.input_layernorm.weight": "model-00023-of-00027.safetensors",
548
+ "model.layers.53.mlp.down_proj.weight": "model-00023-of-00027.safetensors",
549
+ "model.layers.53.mlp.gate_proj.weight": "model-00023-of-00027.safetensors",
550
+ "model.layers.53.mlp.up_proj.weight": "model-00023-of-00027.safetensors",
551
+ "model.layers.53.post_attention_layernorm.weight": "model-00023-of-00027.safetensors",
552
+ "model.layers.53.self_attn.k_norm.weight": "model-00022-of-00027.safetensors",
553
+ "model.layers.53.self_attn.k_proj.weight": "model-00022-of-00027.safetensors",
554
+ "model.layers.53.self_attn.o_proj.weight": "model-00022-of-00027.safetensors",
555
+ "model.layers.53.self_attn.q_norm.weight": "model-00022-of-00027.safetensors",
556
+ "model.layers.53.self_attn.q_proj.weight": "model-00022-of-00027.safetensors",
557
+ "model.layers.53.self_attn.v_proj.weight": "model-00022-of-00027.safetensors",
558
+ "model.layers.54.input_layernorm.weight": "model-00023-of-00027.safetensors",
559
+ "model.layers.54.mlp.down_proj.weight": "model-00023-of-00027.safetensors",
560
+ "model.layers.54.mlp.gate_proj.weight": "model-00023-of-00027.safetensors",
561
+ "model.layers.54.mlp.up_proj.weight": "model-00023-of-00027.safetensors",
562
+ "model.layers.54.post_attention_layernorm.weight": "model-00023-of-00027.safetensors",
563
+ "model.layers.54.self_attn.k_norm.weight": "model-00023-of-00027.safetensors",
564
+ "model.layers.54.self_attn.k_proj.weight": "model-00023-of-00027.safetensors",
565
+ "model.layers.54.self_attn.o_proj.weight": "model-00023-of-00027.safetensors",
566
+ "model.layers.54.self_attn.q_norm.weight": "model-00023-of-00027.safetensors",
567
+ "model.layers.54.self_attn.q_proj.weight": "model-00023-of-00027.safetensors",
568
+ "model.layers.54.self_attn.v_proj.weight": "model-00023-of-00027.safetensors",
569
+ "model.layers.55.input_layernorm.weight": "model-00024-of-00027.safetensors",
570
+ "model.layers.55.mlp.down_proj.weight": "model-00024-of-00027.safetensors",
571
+ "model.layers.55.mlp.gate_proj.weight": "model-00023-of-00027.safetensors",
572
+ "model.layers.55.mlp.up_proj.weight": "model-00023-of-00027.safetensors",
573
+ "model.layers.55.post_attention_layernorm.weight": "model-00024-of-00027.safetensors",
574
+ "model.layers.55.self_attn.k_norm.weight": "model-00023-of-00027.safetensors",
575
+ "model.layers.55.self_attn.k_proj.weight": "model-00023-of-00027.safetensors",
576
+ "model.layers.55.self_attn.o_proj.weight": "model-00023-of-00027.safetensors",
577
+ "model.layers.55.self_attn.q_norm.weight": "model-00023-of-00027.safetensors",
578
+ "model.layers.55.self_attn.q_proj.weight": "model-00023-of-00027.safetensors",
579
+ "model.layers.55.self_attn.v_proj.weight": "model-00023-of-00027.safetensors",
580
+ "model.layers.56.input_layernorm.weight": "model-00024-of-00027.safetensors",
581
+ "model.layers.56.mlp.down_proj.weight": "model-00024-of-00027.safetensors",
582
+ "model.layers.56.mlp.gate_proj.weight": "model-00024-of-00027.safetensors",
583
+ "model.layers.56.mlp.up_proj.weight": "model-00024-of-00027.safetensors",
584
+ "model.layers.56.post_attention_layernorm.weight": "model-00024-of-00027.safetensors",
585
+ "model.layers.56.self_attn.k_norm.weight": "model-00024-of-00027.safetensors",
586
+ "model.layers.56.self_attn.k_proj.weight": "model-00024-of-00027.safetensors",
587
+ "model.layers.56.self_attn.o_proj.weight": "model-00024-of-00027.safetensors",
588
+ "model.layers.56.self_attn.q_norm.weight": "model-00024-of-00027.safetensors",
589
+ "model.layers.56.self_attn.q_proj.weight": "model-00024-of-00027.safetensors",
590
+ "model.layers.56.self_attn.v_proj.weight": "model-00024-of-00027.safetensors",
591
+ "model.layers.57.input_layernorm.weight": "model-00024-of-00027.safetensors",
592
+ "model.layers.57.mlp.down_proj.weight": "model-00024-of-00027.safetensors",
593
+ "model.layers.57.mlp.gate_proj.weight": "model-00024-of-00027.safetensors",
594
+ "model.layers.57.mlp.up_proj.weight": "model-00024-of-00027.safetensors",
595
+ "model.layers.57.post_attention_layernorm.weight": "model-00024-of-00027.safetensors",
596
+ "model.layers.57.self_attn.k_norm.weight": "model-00024-of-00027.safetensors",
597
+ "model.layers.57.self_attn.k_proj.weight": "model-00024-of-00027.safetensors",
598
+ "model.layers.57.self_attn.o_proj.weight": "model-00024-of-00027.safetensors",
599
+ "model.layers.57.self_attn.q_norm.weight": "model-00024-of-00027.safetensors",
600
+ "model.layers.57.self_attn.q_proj.weight": "model-00024-of-00027.safetensors",
601
+ "model.layers.57.self_attn.v_proj.weight": "model-00024-of-00027.safetensors",
602
+ "model.layers.58.input_layernorm.weight": "model-00025-of-00027.safetensors",
603
+ "model.layers.58.mlp.down_proj.weight": "model-00025-of-00027.safetensors",
604
+ "model.layers.58.mlp.gate_proj.weight": "model-00025-of-00027.safetensors",
605
+ "model.layers.58.mlp.up_proj.weight": "model-00025-of-00027.safetensors",
606
+ "model.layers.58.post_attention_layernorm.weight": "model-00025-of-00027.safetensors",
607
+ "model.layers.58.self_attn.k_norm.weight": "model-00024-of-00027.safetensors",
608
+ "model.layers.58.self_attn.k_proj.weight": "model-00024-of-00027.safetensors",
609
+ "model.layers.58.self_attn.o_proj.weight": "model-00024-of-00027.safetensors",
610
+ "model.layers.58.self_attn.q_norm.weight": "model-00024-of-00027.safetensors",
611
+ "model.layers.58.self_attn.q_proj.weight": "model-00024-of-00027.safetensors",
612
+ "model.layers.58.self_attn.v_proj.weight": "model-00024-of-00027.safetensors",
613
+ "model.layers.59.input_layernorm.weight": "model-00025-of-00027.safetensors",
614
+ "model.layers.59.mlp.down_proj.weight": "model-00025-of-00027.safetensors",
615
+ "model.layers.59.mlp.gate_proj.weight": "model-00025-of-00027.safetensors",
616
+ "model.layers.59.mlp.up_proj.weight": "model-00025-of-00027.safetensors",
617
+ "model.layers.59.post_attention_layernorm.weight": "model-00025-of-00027.safetensors",
618
+ "model.layers.59.self_attn.k_norm.weight": "model-00025-of-00027.safetensors",
619
+ "model.layers.59.self_attn.k_proj.weight": "model-00025-of-00027.safetensors",
620
+ "model.layers.59.self_attn.o_proj.weight": "model-00025-of-00027.safetensors",
621
+ "model.layers.59.self_attn.q_norm.weight": "model-00025-of-00027.safetensors",
622
+ "model.layers.59.self_attn.q_proj.weight": "model-00025-of-00027.safetensors",
623
+ "model.layers.59.self_attn.v_proj.weight": "model-00025-of-00027.safetensors",
624
+ "model.layers.6.input_layernorm.weight": "model-00004-of-00027.safetensors",
625
+ "model.layers.6.mlp.down_proj.weight": "model-00004-of-00027.safetensors",
626
+ "model.layers.6.mlp.gate_proj.weight": "model-00004-of-00027.safetensors",
627
+ "model.layers.6.mlp.up_proj.weight": "model-00004-of-00027.safetensors",
628
+ "model.layers.6.post_attention_layernorm.weight": "model-00004-of-00027.safetensors",
629
+ "model.layers.6.self_attn.k_norm.weight": "model-00004-of-00027.safetensors",
630
+ "model.layers.6.self_attn.k_proj.weight": "model-00004-of-00027.safetensors",
631
+ "model.layers.6.self_attn.o_proj.weight": "model-00004-of-00027.safetensors",
632
+ "model.layers.6.self_attn.q_norm.weight": "model-00004-of-00027.safetensors",
633
+ "model.layers.6.self_attn.q_proj.weight": "model-00004-of-00027.safetensors",
634
+ "model.layers.6.self_attn.v_proj.weight": "model-00004-of-00027.safetensors",
635
+ "model.layers.60.input_layernorm.weight": "model-00026-of-00027.safetensors",
636
+ "model.layers.60.mlp.down_proj.weight": "model-00026-of-00027.safetensors",
637
+ "model.layers.60.mlp.gate_proj.weight": "model-00025-of-00027.safetensors",
638
+ "model.layers.60.mlp.up_proj.weight": "model-00025-of-00027.safetensors",
639
+ "model.layers.60.post_attention_layernorm.weight": "model-00026-of-00027.safetensors",
640
+ "model.layers.60.self_attn.k_norm.weight": "model-00025-of-00027.safetensors",
641
+ "model.layers.60.self_attn.k_proj.weight": "model-00025-of-00027.safetensors",
642
+ "model.layers.60.self_attn.o_proj.weight": "model-00025-of-00027.safetensors",
643
+ "model.layers.60.self_attn.q_norm.weight": "model-00025-of-00027.safetensors",
644
+ "model.layers.60.self_attn.q_proj.weight": "model-00025-of-00027.safetensors",
645
+ "model.layers.60.self_attn.v_proj.weight": "model-00025-of-00027.safetensors",
646
+ "model.layers.61.input_layernorm.weight": "model-00026-of-00027.safetensors",
647
+ "model.layers.61.mlp.down_proj.weight": "model-00026-of-00027.safetensors",
648
+ "model.layers.61.mlp.gate_proj.weight": "model-00026-of-00027.safetensors",
649
+ "model.layers.61.mlp.up_proj.weight": "model-00026-of-00027.safetensors",
650
+ "model.layers.61.post_attention_layernorm.weight": "model-00026-of-00027.safetensors",
651
+ "model.layers.61.self_attn.k_norm.weight": "model-00026-of-00027.safetensors",
652
+ "model.layers.61.self_attn.k_proj.weight": "model-00026-of-00027.safetensors",
653
+ "model.layers.61.self_attn.o_proj.weight": "model-00026-of-00027.safetensors",
654
+ "model.layers.61.self_attn.q_norm.weight": "model-00026-of-00027.safetensors",
655
+ "model.layers.61.self_attn.q_proj.weight": "model-00026-of-00027.safetensors",
656
+ "model.layers.61.self_attn.v_proj.weight": "model-00026-of-00027.safetensors",
657
+ "model.layers.62.input_layernorm.weight": "model-00026-of-00027.safetensors",
658
+ "model.layers.62.mlp.down_proj.weight": "model-00026-of-00027.safetensors",
659
+ "model.layers.62.mlp.gate_proj.weight": "model-00026-of-00027.safetensors",
660
+ "model.layers.62.mlp.up_proj.weight": "model-00026-of-00027.safetensors",
661
+ "model.layers.62.post_attention_layernorm.weight": "model-00026-of-00027.safetensors",
662
+ "model.layers.62.self_attn.k_norm.weight": "model-00026-of-00027.safetensors",
663
+ "model.layers.62.self_attn.k_proj.weight": "model-00026-of-00027.safetensors",
664
+ "model.layers.62.self_attn.o_proj.weight": "model-00026-of-00027.safetensors",
665
+ "model.layers.62.self_attn.q_norm.weight": "model-00026-of-00027.safetensors",
666
+ "model.layers.62.self_attn.q_proj.weight": "model-00026-of-00027.safetensors",
667
+ "model.layers.62.self_attn.v_proj.weight": "model-00026-of-00027.safetensors",
668
+ "model.layers.63.input_layernorm.weight": "model-00027-of-00027.safetensors",
669
+ "model.layers.63.mlp.down_proj.weight": "model-00027-of-00027.safetensors",
670
+ "model.layers.63.mlp.gate_proj.weight": "model-00027-of-00027.safetensors",
671
+ "model.layers.63.mlp.up_proj.weight": "model-00027-of-00027.safetensors",
672
+ "model.layers.63.post_attention_layernorm.weight": "model-00027-of-00027.safetensors",
673
+ "model.layers.63.self_attn.k_norm.weight": "model-00026-of-00027.safetensors",
674
+ "model.layers.63.self_attn.k_proj.weight": "model-00026-of-00027.safetensors",
675
+ "model.layers.63.self_attn.o_proj.weight": "model-00026-of-00027.safetensors",
676
+ "model.layers.63.self_attn.q_norm.weight": "model-00026-of-00027.safetensors",
677
+ "model.layers.63.self_attn.q_proj.weight": "model-00026-of-00027.safetensors",
678
+ "model.layers.63.self_attn.v_proj.weight": "model-00026-of-00027.safetensors",
679
+ "model.layers.7.input_layernorm.weight": "model-00004-of-00027.safetensors",
680
+ "model.layers.7.mlp.down_proj.weight": "model-00004-of-00027.safetensors",
681
+ "model.layers.7.mlp.gate_proj.weight": "model-00004-of-00027.safetensors",
682
+ "model.layers.7.mlp.up_proj.weight": "model-00004-of-00027.safetensors",
683
+ "model.layers.7.post_attention_layernorm.weight": "model-00004-of-00027.safetensors",
684
+ "model.layers.7.self_attn.k_norm.weight": "model-00004-of-00027.safetensors",
685
+ "model.layers.7.self_attn.k_proj.weight": "model-00004-of-00027.safetensors",
686
+ "model.layers.7.self_attn.o_proj.weight": "model-00004-of-00027.safetensors",
687
+ "model.layers.7.self_attn.q_norm.weight": "model-00004-of-00027.safetensors",
688
+ "model.layers.7.self_attn.q_proj.weight": "model-00004-of-00027.safetensors",
689
+ "model.layers.7.self_attn.v_proj.weight": "model-00004-of-00027.safetensors",
690
+ "model.layers.8.input_layernorm.weight": "model-00005-of-00027.safetensors",
691
+ "model.layers.8.mlp.down_proj.weight": "model-00005-of-00027.safetensors",
692
+ "model.layers.8.mlp.gate_proj.weight": "model-00005-of-00027.safetensors",
693
+ "model.layers.8.mlp.up_proj.weight": "model-00005-of-00027.safetensors",
694
+ "model.layers.8.post_attention_layernorm.weight": "model-00005-of-00027.safetensors",
695
+ "model.layers.8.self_attn.k_norm.weight": "model-00004-of-00027.safetensors",
696
+ "model.layers.8.self_attn.k_proj.weight": "model-00004-of-00027.safetensors",
697
+ "model.layers.8.self_attn.o_proj.weight": "model-00004-of-00027.safetensors",
698
+ "model.layers.8.self_attn.q_norm.weight": "model-00004-of-00027.safetensors",
699
+ "model.layers.8.self_attn.q_proj.weight": "model-00004-of-00027.safetensors",
700
+ "model.layers.8.self_attn.v_proj.weight": "model-00004-of-00027.safetensors",
701
+ "model.layers.9.input_layernorm.weight": "model-00005-of-00027.safetensors",
702
+ "model.layers.9.mlp.down_proj.weight": "model-00005-of-00027.safetensors",
703
+ "model.layers.9.mlp.gate_proj.weight": "model-00005-of-00027.safetensors",
704
+ "model.layers.9.mlp.up_proj.weight": "model-00005-of-00027.safetensors",
705
+ "model.layers.9.post_attention_layernorm.weight": "model-00005-of-00027.safetensors",
706
+ "model.layers.9.self_attn.k_norm.weight": "model-00005-of-00027.safetensors",
707
+ "model.layers.9.self_attn.k_proj.weight": "model-00005-of-00027.safetensors",
708
+ "model.layers.9.self_attn.o_proj.weight": "model-00005-of-00027.safetensors",
709
+ "model.layers.9.self_attn.q_norm.weight": "model-00005-of-00027.safetensors",
710
+ "model.layers.9.self_attn.q_proj.weight": "model-00005-of-00027.safetensors",
711
+ "model.layers.9.self_attn.v_proj.weight": "model-00005-of-00027.safetensors",
712
+ "model.norm.weight": "model-00027-of-00027.safetensors"
713
+ }
714
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "extra_special_tokens": {},
234
+ "model_max_length": 131072,
235
+ "pad_token": "<|endoftext|>",
236
+ "padding_side": "left",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "total_flos": 5.0940118456365744e+19,
4
+ "train_loss": 0.6584736234383565,
5
+ "train_runtime": 47270.2985,
6
+ "train_samples_per_second": 5.653,
7
+ "train_steps_per_second": 0.011
8
+ }
trainer_log.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a38d64247c50b3652298877b4e74d17364af0af1094483a594536051460c2437
3
+ size 6161
training_eval_loss.png ADDED
training_loss.png ADDED