Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- Modelfile +14 -0
- README.md +118 -0
- adapter_config.json +39 -0
- adapter_model.safetensors +3 -0
- added_tokens.json +28 -0
- all_results.json +12 -0
- chat_template.jinja +89 -0
- checkpoint-450/README.md +202 -0
- checkpoint-450/adapter_config.json +39 -0
- checkpoint-450/added_tokens.json +28 -0
- checkpoint-450/chat_template.jinja +89 -0
- checkpoint-450/merges.txt +0 -0
- checkpoint-450/special_tokens_map.json +31 -0
- checkpoint-450/tokenizer_config.json +240 -0
- checkpoint-450/trainer_state.json +3544 -0
- checkpoint-450/vocab.json +0 -0
- checkpoint-500/README.md +202 -0
- checkpoint-522/README.md +202 -0
- checkpoint-522/adapter_config.json +39 -0
- checkpoint-522/added_tokens.json +28 -0
- checkpoint-522/chat_template.jinja +89 -0
- checkpoint-522/merges.txt +0 -0
- checkpoint-522/special_tokens_map.json +31 -0
- checkpoint-522/tokenizer_config.json +240 -0
- checkpoint-522/trainer_state.json +0 -0
- checkpoint-522/vocab.json +0 -0
- config.json +30 -0
- dataset/dataset_dict.json +1 -0
- eval_results.json +7 -0
- generation_config.json +13 -0
- merges.txt +0 -0
- model-00001-of-00027.safetensors +3 -0
- model-00004-of-00027.safetensors +3 -0
- model-00006-of-00027.safetensors +3 -0
- model-00012-of-00027.safetensors +3 -0
- model-00019-of-00027.safetensors +3 -0
- model-00024-of-00027.safetensors +3 -0
- model-00025-of-00027.safetensors +3 -0
- model-00026-of-00027.safetensors +3 -0
- model.safetensors.index.json +714 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- train_results.json +8 -0
- trainer_log.jsonl +0 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
- training_eval_loss.png +0 -0
- training_loss.png +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
Modelfile
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ollama modelfile auto-generated by llamafactory
|
2 |
+
|
3 |
+
FROM .
|
4 |
+
|
5 |
+
TEMPLATE """{{ if .System }}<|im_start|>system
|
6 |
+
{{ .System }}<|im_end|>
|
7 |
+
{{ end }}{{ range .Messages }}{{ if eq .Role "user" }}<|im_start|>user
|
8 |
+
{{ .Content }}<|im_end|>
|
9 |
+
<|im_start|>assistant
|
10 |
+
{{ else if eq .Role "assistant" }}{{ .Content }}<|im_end|>
|
11 |
+
{{ end }}{{ end }}"""
|
12 |
+
|
13 |
+
PARAMETER stop "<|im_end|>"
|
14 |
+
PARAMETER num_ctx 4096
|
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: other
|
4 |
+
base_model: Qwen/Qwen3-32B
|
5 |
+
tags:
|
6 |
+
- llama-factory
|
7 |
+
- lora
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct-seed-4201
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct-seed-4201
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen3-32B](https://huggingface.co//Qwen/Qwen3-32B) on the alpaca-th-52k, the dolly-th-15k and the wangchan-instruct datasets.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6413
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0002
|
41 |
+
- train_batch_size: 2
|
42 |
+
- eval_batch_size: 2
|
43 |
+
- seed: 4201
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- num_devices: 32
|
46 |
+
- gradient_accumulation_steps: 8
|
47 |
+
- total_train_batch_size: 512
|
48 |
+
- total_eval_batch_size: 64
|
49 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
+
- lr_scheduler_type: cosine
|
51 |
+
- lr_scheduler_warmup_ratio: 0.1
|
52 |
+
- num_epochs: 3.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
57 |
+
|:-------------:|:------:|:----:|:---------------:|
|
58 |
+
| 0.9293 | 0.0575 | 10 | 1.0471 |
|
59 |
+
| 0.8085 | 0.1149 | 20 | 0.8245 |
|
60 |
+
| 0.7547 | 0.1724 | 30 | 0.7581 |
|
61 |
+
| 0.7289 | 0.2299 | 40 | 0.7386 |
|
62 |
+
| 0.6965 | 0.2874 | 50 | 0.7242 |
|
63 |
+
| 0.6848 | 0.3448 | 60 | 0.7109 |
|
64 |
+
| 0.693 | 0.4023 | 70 | 0.7022 |
|
65 |
+
| 0.7101 | 0.4598 | 80 | 0.6947 |
|
66 |
+
| 0.7293 | 0.5172 | 90 | 0.6888 |
|
67 |
+
| 0.6852 | 0.5747 | 100 | 0.6822 |
|
68 |
+
| 0.7033 | 0.6322 | 110 | 0.6770 |
|
69 |
+
| 0.6815 | 0.6897 | 120 | 0.6736 |
|
70 |
+
| 0.679 | 0.7471 | 130 | 0.6707 |
|
71 |
+
| 0.6571 | 0.8046 | 140 | 0.6682 |
|
72 |
+
| 0.6491 | 0.8621 | 150 | 0.6660 |
|
73 |
+
| 0.7015 | 0.9195 | 160 | 0.6636 |
|
74 |
+
| 0.6523 | 0.9770 | 170 | 0.6619 |
|
75 |
+
| 0.6672 | 1.0345 | 180 | 0.6602 |
|
76 |
+
| 0.6862 | 1.0920 | 190 | 0.6588 |
|
77 |
+
| 0.6755 | 1.1494 | 200 | 0.6577 |
|
78 |
+
| 0.6279 | 1.2069 | 210 | 0.6563 |
|
79 |
+
| 0.6622 | 1.2644 | 220 | 0.6551 |
|
80 |
+
| 0.6329 | 1.3218 | 230 | 0.6542 |
|
81 |
+
| 0.6559 | 1.3793 | 240 | 0.6528 |
|
82 |
+
| 0.6389 | 1.4368 | 250 | 0.6517 |
|
83 |
+
| 0.6476 | 1.4943 | 260 | 0.6506 |
|
84 |
+
| 0.6412 | 1.5517 | 270 | 0.6497 |
|
85 |
+
| 0.6232 | 1.6092 | 280 | 0.6485 |
|
86 |
+
| 0.6243 | 1.6667 | 290 | 0.6478 |
|
87 |
+
| 0.6467 | 1.7241 | 300 | 0.6469 |
|
88 |
+
| 0.6146 | 1.7816 | 310 | 0.6460 |
|
89 |
+
| 0.6386 | 1.8391 | 320 | 0.6450 |
|
90 |
+
| 0.6456 | 1.8966 | 330 | 0.6443 |
|
91 |
+
| 0.6402 | 1.9540 | 340 | 0.6437 |
|
92 |
+
| 0.6455 | 2.0115 | 350 | 0.6434 |
|
93 |
+
| 0.5888 | 2.0690 | 360 | 0.6437 |
|
94 |
+
| 0.6267 | 2.1264 | 370 | 0.6435 |
|
95 |
+
| 0.6292 | 2.1839 | 380 | 0.6434 |
|
96 |
+
| 0.6058 | 2.2414 | 390 | 0.6432 |
|
97 |
+
| 0.6221 | 2.2989 | 400 | 0.6427 |
|
98 |
+
| 0.6254 | 2.3563 | 410 | 0.6428 |
|
99 |
+
| 0.6178 | 2.4138 | 420 | 0.6423 |
|
100 |
+
| 0.6161 | 2.4713 | 430 | 0.6420 |
|
101 |
+
| 0.634 | 2.5287 | 440 | 0.6419 |
|
102 |
+
| 0.6241 | 2.5862 | 450 | 0.6418 |
|
103 |
+
| 0.6084 | 2.6437 | 460 | 0.6416 |
|
104 |
+
| 0.6264 | 2.7011 | 470 | 0.6415 |
|
105 |
+
| 0.608 | 2.7586 | 480 | 0.6413 |
|
106 |
+
| 0.6039 | 2.8161 | 490 | 0.6413 |
|
107 |
+
| 0.6445 | 2.8736 | 500 | 0.6413 |
|
108 |
+
| 0.6249 | 2.9310 | 510 | 0.6413 |
|
109 |
+
| 0.6006 | 2.9885 | 520 | 0.6413 |
|
110 |
+
|
111 |
+
|
112 |
+
### Framework versions
|
113 |
+
|
114 |
+
- PEFT 0.15.2
|
115 |
+
- Transformers 4.52.3
|
116 |
+
- Pytorch 2.7.0+cu126
|
117 |
+
- Datasets 3.6.0
|
118 |
+
- Tokenizers 0.21.1
|
adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/project/lt200252-wcbart/pumet/models/Qwen3-32B",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 16,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.0,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 8,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"q_proj",
|
28 |
+
"down_proj",
|
29 |
+
"gate_proj",
|
30 |
+
"o_proj",
|
31 |
+
"k_proj",
|
32 |
+
"up_proj",
|
33 |
+
"v_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": false
|
39 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:453ebc8f5c1bea2bd1524f679458ecb8dcf688b79fb369961e2c028fc821299c
|
3 |
+
size 268555264
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_loss": 0.6412659883499146,
|
4 |
+
"eval_runtime": 413.4377,
|
5 |
+
"eval_samples_per_second": 23.941,
|
6 |
+
"eval_steps_per_second": 0.375,
|
7 |
+
"total_flos": 5.0940118456365744e+19,
|
8 |
+
"train_loss": 0.6584736234383565,
|
9 |
+
"train_runtime": 47270.2985,
|
10 |
+
"train_samples_per_second": 5.653,
|
11 |
+
"train_steps_per_second": 0.011
|
12 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for message in messages[::-1] %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
21 |
+
{%- set ns.multi_step_tool = false %}
|
22 |
+
{%- set ns.last_query_index = index %}
|
23 |
+
{%- endif %}
|
24 |
+
{%- endfor %}
|
25 |
+
{%- for message in messages %}
|
26 |
+
{%- if message.content is string %}
|
27 |
+
{%- set content = message.content %}
|
28 |
+
{%- else %}
|
29 |
+
{%- set content = '' %}
|
30 |
+
{%- endif %}
|
31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
33 |
+
{%- elif message.role == "assistant" %}
|
34 |
+
{%- set reasoning_content = '' %}
|
35 |
+
{%- if message.reasoning_content is string %}
|
36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
37 |
+
{%- else %}
|
38 |
+
{%- if '</think>' in content %}
|
39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
41 |
+
{%- endif %}
|
42 |
+
{%- endif %}
|
43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
46 |
+
{%- else %}
|
47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
48 |
+
{%- endif %}
|
49 |
+
{%- else %}
|
50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
51 |
+
{%- endif %}
|
52 |
+
{%- if message.tool_calls %}
|
53 |
+
{%- for tool_call in message.tool_calls %}
|
54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
55 |
+
{{- '\n' }}
|
56 |
+
{%- endif %}
|
57 |
+
{%- if tool_call.function %}
|
58 |
+
{%- set tool_call = tool_call.function %}
|
59 |
+
{%- endif %}
|
60 |
+
{{- '<tool_call>\n{"name": "' }}
|
61 |
+
{{- tool_call.name }}
|
62 |
+
{{- '", "arguments": ' }}
|
63 |
+
{%- if tool_call.arguments is string %}
|
64 |
+
{{- tool_call.arguments }}
|
65 |
+
{%- else %}
|
66 |
+
{{- tool_call.arguments | tojson }}
|
67 |
+
{%- endif %}
|
68 |
+
{{- '}\n</tool_call>' }}
|
69 |
+
{%- endfor %}
|
70 |
+
{%- endif %}
|
71 |
+
{{- '<|im_end|>\n' }}
|
72 |
+
{%- elif message.role == "tool" %}
|
73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
74 |
+
{{- '<|im_start|>user' }}
|
75 |
+
{%- endif %}
|
76 |
+
{{- '\n<tool_response>\n' }}
|
77 |
+
{{- content }}
|
78 |
+
{{- '\n</tool_response>' }}
|
79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
80 |
+
{{- '<|im_end|>\n' }}
|
81 |
+
{%- endif %}
|
82 |
+
{%- endif %}
|
83 |
+
{%- endfor %}
|
84 |
+
{%- if add_generation_prompt %}
|
85 |
+
{{- '<|im_start|>assistant\n' }}
|
86 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
87 |
+
{{- '<think>\n\n</think>\n\n' }}
|
88 |
+
{%- endif %}
|
89 |
+
{%- endif %}
|
checkpoint-450/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /project/lt200252-wcbart/pumet/models/Qwen3-32B
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.2
|
checkpoint-450/adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/project/lt200252-wcbart/pumet/models/Qwen3-32B",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 16,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.0,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 8,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"q_proj",
|
28 |
+
"down_proj",
|
29 |
+
"gate_proj",
|
30 |
+
"o_proj",
|
31 |
+
"k_proj",
|
32 |
+
"up_proj",
|
33 |
+
"v_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": false
|
39 |
+
}
|
checkpoint-450/added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
checkpoint-450/chat_template.jinja
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for message in messages[::-1] %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
21 |
+
{%- set ns.multi_step_tool = false %}
|
22 |
+
{%- set ns.last_query_index = index %}
|
23 |
+
{%- endif %}
|
24 |
+
{%- endfor %}
|
25 |
+
{%- for message in messages %}
|
26 |
+
{%- if message.content is string %}
|
27 |
+
{%- set content = message.content %}
|
28 |
+
{%- else %}
|
29 |
+
{%- set content = '' %}
|
30 |
+
{%- endif %}
|
31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
33 |
+
{%- elif message.role == "assistant" %}
|
34 |
+
{%- set reasoning_content = '' %}
|
35 |
+
{%- if message.reasoning_content is string %}
|
36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
37 |
+
{%- else %}
|
38 |
+
{%- if '</think>' in content %}
|
39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
41 |
+
{%- endif %}
|
42 |
+
{%- endif %}
|
43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
46 |
+
{%- else %}
|
47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
48 |
+
{%- endif %}
|
49 |
+
{%- else %}
|
50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
51 |
+
{%- endif %}
|
52 |
+
{%- if message.tool_calls %}
|
53 |
+
{%- for tool_call in message.tool_calls %}
|
54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
55 |
+
{{- '\n' }}
|
56 |
+
{%- endif %}
|
57 |
+
{%- if tool_call.function %}
|
58 |
+
{%- set tool_call = tool_call.function %}
|
59 |
+
{%- endif %}
|
60 |
+
{{- '<tool_call>\n{"name": "' }}
|
61 |
+
{{- tool_call.name }}
|
62 |
+
{{- '", "arguments": ' }}
|
63 |
+
{%- if tool_call.arguments is string %}
|
64 |
+
{{- tool_call.arguments }}
|
65 |
+
{%- else %}
|
66 |
+
{{- tool_call.arguments | tojson }}
|
67 |
+
{%- endif %}
|
68 |
+
{{- '}\n</tool_call>' }}
|
69 |
+
{%- endfor %}
|
70 |
+
{%- endif %}
|
71 |
+
{{- '<|im_end|>\n' }}
|
72 |
+
{%- elif message.role == "tool" %}
|
73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
74 |
+
{{- '<|im_start|>user' }}
|
75 |
+
{%- endif %}
|
76 |
+
{{- '\n<tool_response>\n' }}
|
77 |
+
{{- content }}
|
78 |
+
{{- '\n</tool_response>' }}
|
79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
80 |
+
{{- '<|im_end|>\n' }}
|
81 |
+
{%- endif %}
|
82 |
+
{%- endif %}
|
83 |
+
{%- endfor %}
|
84 |
+
{%- if add_generation_prompt %}
|
85 |
+
{{- '<|im_start|>assistant\n' }}
|
86 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
87 |
+
{{- '<think>\n\n</think>\n\n' }}
|
88 |
+
{%- endif %}
|
89 |
+
{%- endif %}
|
checkpoint-450/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-450/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-450/tokenizer_config.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"extra_special_tokens": {},
|
234 |
+
"model_max_length": 131072,
|
235 |
+
"pad_token": "<|endoftext|>",
|
236 |
+
"padding_side": "right",
|
237 |
+
"split_special_tokens": false,
|
238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
239 |
+
"unk_token": null
|
240 |
+
}
|
checkpoint-450/trainer_state.json
ADDED
@@ -0,0 +1,3544 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 2.586206896551724,
|
6 |
+
"eval_steps": 10,
|
7 |
+
"global_step": 450,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.005747126436781609,
|
14 |
+
"grad_norm": 0.10123365372419357,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 0.9918,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.011494252873563218,
|
21 |
+
"grad_norm": 0.09671098738908768,
|
22 |
+
"learning_rate": 3.7735849056603773e-06,
|
23 |
+
"loss": 0.9604,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.017241379310344827,
|
28 |
+
"grad_norm": 0.0981190875172615,
|
29 |
+
"learning_rate": 7.547169811320755e-06,
|
30 |
+
"loss": 0.9868,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.022988505747126436,
|
35 |
+
"grad_norm": 0.10396745055913925,
|
36 |
+
"learning_rate": 1.1320754716981132e-05,
|
37 |
+
"loss": 0.962,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.028735632183908046,
|
42 |
+
"grad_norm": 0.0982985869050026,
|
43 |
+
"learning_rate": 1.509433962264151e-05,
|
44 |
+
"loss": 0.9684,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.034482758620689655,
|
49 |
+
"grad_norm": 0.10332155227661133,
|
50 |
+
"learning_rate": 1.8867924528301888e-05,
|
51 |
+
"loss": 0.9442,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.040229885057471264,
|
56 |
+
"grad_norm": 0.1124059334397316,
|
57 |
+
"learning_rate": 2.2641509433962265e-05,
|
58 |
+
"loss": 0.9382,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.04597701149425287,
|
63 |
+
"grad_norm": 0.12120208889245987,
|
64 |
+
"learning_rate": 2.641509433962264e-05,
|
65 |
+
"loss": 0.9416,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.05172413793103448,
|
70 |
+
"grad_norm": 0.12729395925998688,
|
71 |
+
"learning_rate": 3.018867924528302e-05,
|
72 |
+
"loss": 0.9356,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.05747126436781609,
|
77 |
+
"grad_norm": 0.13560789823532104,
|
78 |
+
"learning_rate": 3.39622641509434e-05,
|
79 |
+
"loss": 0.9293,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.05747126436781609,
|
84 |
+
"eval_loss": 1.0470749139785767,
|
85 |
+
"eval_runtime": 412.2553,
|
86 |
+
"eval_samples_per_second": 24.009,
|
87 |
+
"eval_steps_per_second": 0.376,
|
88 |
+
"step": 10
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 0.06321839080459771,
|
92 |
+
"grad_norm": 0.1474100798368454,
|
93 |
+
"learning_rate": 3.7735849056603776e-05,
|
94 |
+
"loss": 0.9533,
|
95 |
+
"step": 11
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.06896551724137931,
|
99 |
+
"grad_norm": 0.16510824859142303,
|
100 |
+
"learning_rate": 4.150943396226415e-05,
|
101 |
+
"loss": 0.9206,
|
102 |
+
"step": 12
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 0.07471264367816093,
|
106 |
+
"grad_norm": 0.17097796499729156,
|
107 |
+
"learning_rate": 4.528301886792453e-05,
|
108 |
+
"loss": 0.8921,
|
109 |
+
"step": 13
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.08045977011494253,
|
113 |
+
"grad_norm": 0.17923878133296967,
|
114 |
+
"learning_rate": 4.9056603773584906e-05,
|
115 |
+
"loss": 0.8861,
|
116 |
+
"step": 14
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.08620689655172414,
|
120 |
+
"grad_norm": 0.18173959851264954,
|
121 |
+
"learning_rate": 5.283018867924528e-05,
|
122 |
+
"loss": 0.8904,
|
123 |
+
"step": 15
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.09195402298850575,
|
127 |
+
"grad_norm": 0.17235629260540009,
|
128 |
+
"learning_rate": 5.660377358490566e-05,
|
129 |
+
"loss": 0.8424,
|
130 |
+
"step": 16
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.09770114942528736,
|
134 |
+
"grad_norm": 0.16792210936546326,
|
135 |
+
"learning_rate": 6.037735849056604e-05,
|
136 |
+
"loss": 0.8395,
|
137 |
+
"step": 17
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.10344827586206896,
|
141 |
+
"grad_norm": 0.14939646422863007,
|
142 |
+
"learning_rate": 6.415094339622641e-05,
|
143 |
+
"loss": 0.8203,
|
144 |
+
"step": 18
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.10919540229885058,
|
148 |
+
"grad_norm": 0.14632105827331543,
|
149 |
+
"learning_rate": 6.79245283018868e-05,
|
150 |
+
"loss": 0.8464,
|
151 |
+
"step": 19
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.11494252873563218,
|
155 |
+
"grad_norm": 0.14770475029945374,
|
156 |
+
"learning_rate": 7.169811320754717e-05,
|
157 |
+
"loss": 0.8085,
|
158 |
+
"step": 20
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.11494252873563218,
|
162 |
+
"eval_loss": 0.8244547247886658,
|
163 |
+
"eval_runtime": 404.4489,
|
164 |
+
"eval_samples_per_second": 24.473,
|
165 |
+
"eval_steps_per_second": 0.383,
|
166 |
+
"step": 20
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 0.1206896551724138,
|
170 |
+
"grad_norm": 0.1725720465183258,
|
171 |
+
"learning_rate": 7.547169811320755e-05,
|
172 |
+
"loss": 0.8219,
|
173 |
+
"step": 21
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 0.12643678160919541,
|
177 |
+
"grad_norm": 0.1685618907213211,
|
178 |
+
"learning_rate": 7.924528301886794e-05,
|
179 |
+
"loss": 0.8148,
|
180 |
+
"step": 22
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 0.13218390804597702,
|
184 |
+
"grad_norm": 0.1653290092945099,
|
185 |
+
"learning_rate": 8.30188679245283e-05,
|
186 |
+
"loss": 0.7846,
|
187 |
+
"step": 23
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"epoch": 0.13793103448275862,
|
191 |
+
"grad_norm": 0.16122524440288544,
|
192 |
+
"learning_rate": 8.679245283018869e-05,
|
193 |
+
"loss": 0.7903,
|
194 |
+
"step": 24
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.14367816091954022,
|
198 |
+
"grad_norm": 0.12793505191802979,
|
199 |
+
"learning_rate": 9.056603773584906e-05,
|
200 |
+
"loss": 0.7741,
|
201 |
+
"step": 25
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.14942528735632185,
|
205 |
+
"grad_norm": 0.10620377957820892,
|
206 |
+
"learning_rate": 9.433962264150944e-05,
|
207 |
+
"loss": 0.7308,
|
208 |
+
"step": 26
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 0.15517241379310345,
|
212 |
+
"grad_norm": 0.10993366688489914,
|
213 |
+
"learning_rate": 9.811320754716981e-05,
|
214 |
+
"loss": 0.7559,
|
215 |
+
"step": 27
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 0.16091954022988506,
|
219 |
+
"grad_norm": 0.11916384100914001,
|
220 |
+
"learning_rate": 0.0001018867924528302,
|
221 |
+
"loss": 0.7622,
|
222 |
+
"step": 28
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"epoch": 0.16666666666666666,
|
226 |
+
"grad_norm": 0.13500399887561798,
|
227 |
+
"learning_rate": 0.00010566037735849057,
|
228 |
+
"loss": 0.7436,
|
229 |
+
"step": 29
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 0.1724137931034483,
|
233 |
+
"grad_norm": 0.12777844071388245,
|
234 |
+
"learning_rate": 0.00010943396226415095,
|
235 |
+
"loss": 0.7547,
|
236 |
+
"step": 30
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.1724137931034483,
|
240 |
+
"eval_loss": 0.7580565214157104,
|
241 |
+
"eval_runtime": 404.708,
|
242 |
+
"eval_samples_per_second": 24.457,
|
243 |
+
"eval_steps_per_second": 0.383,
|
244 |
+
"step": 30
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"epoch": 0.1781609195402299,
|
248 |
+
"grad_norm": 0.11721828579902649,
|
249 |
+
"learning_rate": 0.00011320754716981132,
|
250 |
+
"loss": 0.7337,
|
251 |
+
"step": 31
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.1839080459770115,
|
255 |
+
"grad_norm": 0.08667382597923279,
|
256 |
+
"learning_rate": 0.0001169811320754717,
|
257 |
+
"loss": 0.7538,
|
258 |
+
"step": 32
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"epoch": 0.1896551724137931,
|
262 |
+
"grad_norm": 0.06665026396512985,
|
263 |
+
"learning_rate": 0.00012075471698113207,
|
264 |
+
"loss": 0.7186,
|
265 |
+
"step": 33
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 0.19540229885057472,
|
269 |
+
"grad_norm": 0.04627465456724167,
|
270 |
+
"learning_rate": 0.00012452830188679244,
|
271 |
+
"loss": 0.7719,
|
272 |
+
"step": 34
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.20114942528735633,
|
276 |
+
"grad_norm": 0.04290887340903282,
|
277 |
+
"learning_rate": 0.00012830188679245283,
|
278 |
+
"loss": 0.752,
|
279 |
+
"step": 35
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.20689655172413793,
|
283 |
+
"grad_norm": 0.056834809482097626,
|
284 |
+
"learning_rate": 0.0001320754716981132,
|
285 |
+
"loss": 0.7429,
|
286 |
+
"step": 36
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 0.21264367816091953,
|
290 |
+
"grad_norm": 0.062055498361587524,
|
291 |
+
"learning_rate": 0.0001358490566037736,
|
292 |
+
"loss": 0.7208,
|
293 |
+
"step": 37
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.21839080459770116,
|
297 |
+
"grad_norm": 0.070551298558712,
|
298 |
+
"learning_rate": 0.00013962264150943395,
|
299 |
+
"loss": 0.7651,
|
300 |
+
"step": 38
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 0.22413793103448276,
|
304 |
+
"grad_norm": 0.07514140754938126,
|
305 |
+
"learning_rate": 0.00014339622641509434,
|
306 |
+
"loss": 0.7456,
|
307 |
+
"step": 39
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 0.22988505747126436,
|
311 |
+
"grad_norm": 0.06458627432584763,
|
312 |
+
"learning_rate": 0.00014716981132075472,
|
313 |
+
"loss": 0.7289,
|
314 |
+
"step": 40
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.22988505747126436,
|
318 |
+
"eval_loss": 0.7386028170585632,
|
319 |
+
"eval_runtime": 407.409,
|
320 |
+
"eval_samples_per_second": 24.295,
|
321 |
+
"eval_steps_per_second": 0.38,
|
322 |
+
"step": 40
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"epoch": 0.23563218390804597,
|
326 |
+
"grad_norm": 0.056490588933229446,
|
327 |
+
"learning_rate": 0.0001509433962264151,
|
328 |
+
"loss": 0.7503,
|
329 |
+
"step": 41
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.2413793103448276,
|
333 |
+
"grad_norm": 0.036972932517528534,
|
334 |
+
"learning_rate": 0.0001547169811320755,
|
335 |
+
"loss": 0.7392,
|
336 |
+
"step": 42
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 0.2471264367816092,
|
340 |
+
"grad_norm": 0.038239240646362305,
|
341 |
+
"learning_rate": 0.00015849056603773587,
|
342 |
+
"loss": 0.7206,
|
343 |
+
"step": 43
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"epoch": 0.25287356321839083,
|
347 |
+
"grad_norm": 0.033113010227680206,
|
348 |
+
"learning_rate": 0.00016226415094339625,
|
349 |
+
"loss": 0.7198,
|
350 |
+
"step": 44
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.25862068965517243,
|
354 |
+
"grad_norm": 0.03197947517037392,
|
355 |
+
"learning_rate": 0.0001660377358490566,
|
356 |
+
"loss": 0.7393,
|
357 |
+
"step": 45
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.26436781609195403,
|
361 |
+
"grad_norm": 0.03696918115019798,
|
362 |
+
"learning_rate": 0.000169811320754717,
|
363 |
+
"loss": 0.7576,
|
364 |
+
"step": 46
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"epoch": 0.27011494252873564,
|
368 |
+
"grad_norm": 0.04209383204579353,
|
369 |
+
"learning_rate": 0.00017358490566037738,
|
370 |
+
"loss": 0.7157,
|
371 |
+
"step": 47
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 0.27586206896551724,
|
375 |
+
"grad_norm": 0.035038772970438004,
|
376 |
+
"learning_rate": 0.00017735849056603776,
|
377 |
+
"loss": 0.7256,
|
378 |
+
"step": 48
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 0.28160919540229884,
|
382 |
+
"grad_norm": 0.03674735128879547,
|
383 |
+
"learning_rate": 0.00018113207547169812,
|
384 |
+
"loss": 0.7295,
|
385 |
+
"step": 49
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 0.28735632183908044,
|
389 |
+
"grad_norm": 0.046050041913986206,
|
390 |
+
"learning_rate": 0.0001849056603773585,
|
391 |
+
"loss": 0.6965,
|
392 |
+
"step": 50
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.28735632183908044,
|
396 |
+
"eval_loss": 0.724204421043396,
|
397 |
+
"eval_runtime": 405.0004,
|
398 |
+
"eval_samples_per_second": 24.439,
|
399 |
+
"eval_steps_per_second": 0.383,
|
400 |
+
"step": 50
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"epoch": 0.29310344827586204,
|
404 |
+
"grad_norm": 0.036520447582006454,
|
405 |
+
"learning_rate": 0.00018867924528301889,
|
406 |
+
"loss": 0.7273,
|
407 |
+
"step": 51
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 0.2988505747126437,
|
411 |
+
"grad_norm": 0.03720232844352722,
|
412 |
+
"learning_rate": 0.00019245283018867927,
|
413 |
+
"loss": 0.7084,
|
414 |
+
"step": 52
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 0.3045977011494253,
|
418 |
+
"grad_norm": 0.03159736469388008,
|
419 |
+
"learning_rate": 0.00019622641509433963,
|
420 |
+
"loss": 0.7485,
|
421 |
+
"step": 53
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 0.3103448275862069,
|
425 |
+
"grad_norm": 0.03695262596011162,
|
426 |
+
"learning_rate": 0.0002,
|
427 |
+
"loss": 0.745,
|
428 |
+
"step": 54
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.3160919540229885,
|
432 |
+
"grad_norm": 0.041795678436756134,
|
433 |
+
"learning_rate": 0.00019999775651876987,
|
434 |
+
"loss": 0.7165,
|
435 |
+
"step": 55
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.3218390804597701,
|
439 |
+
"grad_norm": 0.03494727239012718,
|
440 |
+
"learning_rate": 0.00019999102617574365,
|
441 |
+
"loss": 0.7499,
|
442 |
+
"step": 56
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"epoch": 0.3275862068965517,
|
446 |
+
"grad_norm": 0.033885981887578964,
|
447 |
+
"learning_rate": 0.00019997980927290927,
|
448 |
+
"loss": 0.7118,
|
449 |
+
"step": 57
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 0.3333333333333333,
|
453 |
+
"grad_norm": 0.03606434166431427,
|
454 |
+
"learning_rate": 0.00019996410631356498,
|
455 |
+
"loss": 0.6945,
|
456 |
+
"step": 58
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"epoch": 0.3390804597701149,
|
460 |
+
"grad_norm": 0.04015219211578369,
|
461 |
+
"learning_rate": 0.00019994391800229666,
|
462 |
+
"loss": 0.6982,
|
463 |
+
"step": 59
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 0.3448275862068966,
|
467 |
+
"grad_norm": 0.0380714014172554,
|
468 |
+
"learning_rate": 0.00019991924524494627,
|
469 |
+
"loss": 0.6848,
|
470 |
+
"step": 60
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.3448275862068966,
|
474 |
+
"eval_loss": 0.7109408378601074,
|
475 |
+
"eval_runtime": 404.9798,
|
476 |
+
"eval_samples_per_second": 24.441,
|
477 |
+
"eval_steps_per_second": 0.383,
|
478 |
+
"step": 60
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.3505747126436782,
|
482 |
+
"grad_norm": 0.04110811650753021,
|
483 |
+
"learning_rate": 0.00019989008914857116,
|
484 |
+
"loss": 0.6899,
|
485 |
+
"step": 61
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.3563218390804598,
|
489 |
+
"grad_norm": 0.03853503614664078,
|
490 |
+
"learning_rate": 0.0001998564510213944,
|
491 |
+
"loss": 0.7094,
|
492 |
+
"step": 62
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.3620689655172414,
|
496 |
+
"grad_norm": 0.0391794852912426,
|
497 |
+
"learning_rate": 0.00019981833237274618,
|
498 |
+
"loss": 0.6975,
|
499 |
+
"step": 63
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.367816091954023,
|
503 |
+
"grad_norm": 0.03894927725195885,
|
504 |
+
"learning_rate": 0.00019977573491299598,
|
505 |
+
"loss": 0.714,
|
506 |
+
"step": 64
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.3735632183908046,
|
510 |
+
"grad_norm": 0.04239923506975174,
|
511 |
+
"learning_rate": 0.00019972866055347572,
|
512 |
+
"loss": 0.7339,
|
513 |
+
"step": 65
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.3793103448275862,
|
517 |
+
"grad_norm": 0.03982697054743767,
|
518 |
+
"learning_rate": 0.0001996771114063943,
|
519 |
+
"loss": 0.6821,
|
520 |
+
"step": 66
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.3850574712643678,
|
524 |
+
"grad_norm": 0.04431302100419998,
|
525 |
+
"learning_rate": 0.00019962108978474263,
|
526 |
+
"loss": 0.7273,
|
527 |
+
"step": 67
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.39080459770114945,
|
531 |
+
"grad_norm": 0.043787937611341476,
|
532 |
+
"learning_rate": 0.00019956059820218982,
|
533 |
+
"loss": 0.6984,
|
534 |
+
"step": 68
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.39655172413793105,
|
538 |
+
"grad_norm": 0.054389603435993195,
|
539 |
+
"learning_rate": 0.00019949563937297045,
|
540 |
+
"loss": 0.6778,
|
541 |
+
"step": 69
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.40229885057471265,
|
545 |
+
"grad_norm": 0.041256386786699295,
|
546 |
+
"learning_rate": 0.00019942621621176282,
|
547 |
+
"loss": 0.693,
|
548 |
+
"step": 70
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.40229885057471265,
|
552 |
+
"eval_loss": 0.7021871209144592,
|
553 |
+
"eval_runtime": 406.6755,
|
554 |
+
"eval_samples_per_second": 24.339,
|
555 |
+
"eval_steps_per_second": 0.381,
|
556 |
+
"step": 70
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.40804597701149425,
|
560 |
+
"grad_norm": 0.05022790655493736,
|
561 |
+
"learning_rate": 0.0001993523318335581,
|
562 |
+
"loss": 0.6967,
|
563 |
+
"step": 71
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.41379310344827586,
|
567 |
+
"grad_norm": 0.06086933612823486,
|
568 |
+
"learning_rate": 0.00019927398955352061,
|
569 |
+
"loss": 0.7279,
|
570 |
+
"step": 72
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.41954022988505746,
|
574 |
+
"grad_norm": 0.04689742252230644,
|
575 |
+
"learning_rate": 0.00019919119288683908,
|
576 |
+
"loss": 0.6792,
|
577 |
+
"step": 73
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.42528735632183906,
|
581 |
+
"grad_norm": 0.04852883517742157,
|
582 |
+
"learning_rate": 0.00019910394554856876,
|
583 |
+
"loss": 0.701,
|
584 |
+
"step": 74
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.43103448275862066,
|
588 |
+
"grad_norm": 0.06196567416191101,
|
589 |
+
"learning_rate": 0.0001990122514534651,
|
590 |
+
"loss": 0.6805,
|
591 |
+
"step": 75
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.4367816091954023,
|
595 |
+
"grad_norm": 0.047033004462718964,
|
596 |
+
"learning_rate": 0.00019891611471580764,
|
597 |
+
"loss": 0.7058,
|
598 |
+
"step": 76
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.4425287356321839,
|
602 |
+
"grad_norm": 0.047392234206199646,
|
603 |
+
"learning_rate": 0.00019881553964921572,
|
604 |
+
"loss": 0.6861,
|
605 |
+
"step": 77
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.4482758620689655,
|
609 |
+
"grad_norm": 0.054070815443992615,
|
610 |
+
"learning_rate": 0.00019871053076645488,
|
611 |
+
"loss": 0.6969,
|
612 |
+
"step": 78
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.4540229885057471,
|
616 |
+
"grad_norm": 0.055412329733371735,
|
617 |
+
"learning_rate": 0.00019860109277923418,
|
618 |
+
"loss": 0.7001,
|
619 |
+
"step": 79
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.45977011494252873,
|
623 |
+
"grad_norm": 0.05274376645684242,
|
624 |
+
"learning_rate": 0.00019848723059799506,
|
625 |
+
"loss": 0.7101,
|
626 |
+
"step": 80
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.45977011494252873,
|
630 |
+
"eval_loss": 0.694656252861023,
|
631 |
+
"eval_runtime": 410.9173,
|
632 |
+
"eval_samples_per_second": 24.088,
|
633 |
+
"eval_steps_per_second": 0.377,
|
634 |
+
"step": 80
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 0.46551724137931033,
|
638 |
+
"grad_norm": 0.05915577709674835,
|
639 |
+
"learning_rate": 0.00019836894933169088,
|
640 |
+
"loss": 0.6836,
|
641 |
+
"step": 81
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 0.47126436781609193,
|
645 |
+
"grad_norm": 0.051574286073446274,
|
646 |
+
"learning_rate": 0.0001982462542875576,
|
647 |
+
"loss": 0.7181,
|
648 |
+
"step": 82
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.47701149425287354,
|
652 |
+
"grad_norm": 0.050167519599199295,
|
653 |
+
"learning_rate": 0.00019811915097087587,
|
654 |
+
"loss": 0.6645,
|
655 |
+
"step": 83
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 0.4827586206896552,
|
659 |
+
"grad_norm": 0.06501943618059158,
|
660 |
+
"learning_rate": 0.00019798764508472373,
|
661 |
+
"loss": 0.6891,
|
662 |
+
"step": 84
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.4885057471264368,
|
666 |
+
"grad_norm": 0.05396122857928276,
|
667 |
+
"learning_rate": 0.00019785174252972092,
|
668 |
+
"loss": 0.6842,
|
669 |
+
"step": 85
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.4942528735632184,
|
673 |
+
"grad_norm": 0.051826637238264084,
|
674 |
+
"learning_rate": 0.0001977114494037641,
|
675 |
+
"loss": 0.7047,
|
676 |
+
"step": 86
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.5,
|
680 |
+
"grad_norm": 0.05442539602518082,
|
681 |
+
"learning_rate": 0.00019756677200175315,
|
682 |
+
"loss": 0.7261,
|
683 |
+
"step": 87
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 0.5057471264367817,
|
687 |
+
"grad_norm": 0.05559674650430679,
|
688 |
+
"learning_rate": 0.0001974177168153088,
|
689 |
+
"loss": 0.6699,
|
690 |
+
"step": 88
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 0.5114942528735632,
|
694 |
+
"grad_norm": 0.058047693222761154,
|
695 |
+
"learning_rate": 0.0001972642905324813,
|
696 |
+
"loss": 0.6831,
|
697 |
+
"step": 89
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 0.5172413793103449,
|
701 |
+
"grad_norm": 0.051893047988414764,
|
702 |
+
"learning_rate": 0.0001971065000374504,
|
703 |
+
"loss": 0.7293,
|
704 |
+
"step": 90
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.5172413793103449,
|
708 |
+
"eval_loss": 0.6888386607170105,
|
709 |
+
"eval_runtime": 405.4362,
|
710 |
+
"eval_samples_per_second": 24.413,
|
711 |
+
"eval_steps_per_second": 0.382,
|
712 |
+
"step": 90
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 0.5229885057471264,
|
716 |
+
"grad_norm": 0.051870737224817276,
|
717 |
+
"learning_rate": 0.0001969443524102163,
|
718 |
+
"loss": 0.6945,
|
719 |
+
"step": 91
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.5287356321839081,
|
723 |
+
"grad_norm": 0.04907568544149399,
|
724 |
+
"learning_rate": 0.0001967778549262822,
|
725 |
+
"loss": 0.6985,
|
726 |
+
"step": 92
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"epoch": 0.5344827586206896,
|
730 |
+
"grad_norm": 0.05802120640873909,
|
731 |
+
"learning_rate": 0.00019660701505632772,
|
732 |
+
"loss": 0.6911,
|
733 |
+
"step": 93
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 0.5402298850574713,
|
737 |
+
"grad_norm": 0.06809733808040619,
|
738 |
+
"learning_rate": 0.0001964318404658737,
|
739 |
+
"loss": 0.6815,
|
740 |
+
"step": 94
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.5459770114942529,
|
744 |
+
"grad_norm": 0.05489501729607582,
|
745 |
+
"learning_rate": 0.00019625233901493822,
|
746 |
+
"loss": 0.6664,
|
747 |
+
"step": 95
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.5517241379310345,
|
751 |
+
"grad_norm": 0.0648936778306961,
|
752 |
+
"learning_rate": 0.000196068518757684,
|
753 |
+
"loss": 0.6689,
|
754 |
+
"step": 96
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 0.5574712643678161,
|
758 |
+
"grad_norm": 0.054548367857933044,
|
759 |
+
"learning_rate": 0.00019588038794205703,
|
760 |
+
"loss": 0.6695,
|
761 |
+
"step": 97
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 0.5632183908045977,
|
765 |
+
"grad_norm": 0.0626642182469368,
|
766 |
+
"learning_rate": 0.00019568795500941635,
|
767 |
+
"loss": 0.7062,
|
768 |
+
"step": 98
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 0.5689655172413793,
|
772 |
+
"grad_norm": 0.0539688840508461,
|
773 |
+
"learning_rate": 0.00019549122859415538,
|
774 |
+
"loss": 0.6891,
|
775 |
+
"step": 99
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 0.5747126436781609,
|
779 |
+
"grad_norm": 0.05761811137199402,
|
780 |
+
"learning_rate": 0.00019529021752331453,
|
781 |
+
"loss": 0.6852,
|
782 |
+
"step": 100
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.5747126436781609,
|
786 |
+
"eval_loss": 0.6821601986885071,
|
787 |
+
"eval_runtime": 404.287,
|
788 |
+
"eval_samples_per_second": 24.483,
|
789 |
+
"eval_steps_per_second": 0.383,
|
790 |
+
"step": 100
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 0.5804597701149425,
|
794 |
+
"grad_norm": 0.054896607995033264,
|
795 |
+
"learning_rate": 0.00019508493081618513,
|
796 |
+
"loss": 0.6785,
|
797 |
+
"step": 101
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.5862068965517241,
|
801 |
+
"grad_norm": 0.06048964709043503,
|
802 |
+
"learning_rate": 0.00019487537768390464,
|
803 |
+
"loss": 0.6724,
|
804 |
+
"step": 102
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 0.5919540229885057,
|
808 |
+
"grad_norm": 0.06828396022319794,
|
809 |
+
"learning_rate": 0.00019466156752904343,
|
810 |
+
"loss": 0.7117,
|
811 |
+
"step": 103
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 0.5977011494252874,
|
815 |
+
"grad_norm": 0.06610234081745148,
|
816 |
+
"learning_rate": 0.0001944435099451829,
|
817 |
+
"loss": 0.6982,
|
818 |
+
"step": 104
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.603448275862069,
|
822 |
+
"grad_norm": 0.06762486696243286,
|
823 |
+
"learning_rate": 0.00019422121471648497,
|
824 |
+
"loss": 0.6768,
|
825 |
+
"step": 105
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.6091954022988506,
|
829 |
+
"grad_norm": 0.05772867798805237,
|
830 |
+
"learning_rate": 0.0001939946918172531,
|
831 |
+
"loss": 0.7073,
|
832 |
+
"step": 106
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 0.6149425287356322,
|
836 |
+
"grad_norm": 0.11993183940649033,
|
837 |
+
"learning_rate": 0.00019376395141148476,
|
838 |
+
"loss": 0.6831,
|
839 |
+
"step": 107
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 0.6206896551724138,
|
843 |
+
"grad_norm": 0.08105713874101639,
|
844 |
+
"learning_rate": 0.00019352900385241536,
|
845 |
+
"loss": 0.6857,
|
846 |
+
"step": 108
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"epoch": 0.6264367816091954,
|
850 |
+
"grad_norm": 0.06035466492176056,
|
851 |
+
"learning_rate": 0.0001932898596820536,
|
852 |
+
"loss": 0.672,
|
853 |
+
"step": 109
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"epoch": 0.632183908045977,
|
857 |
+
"grad_norm": 0.09288731962442398,
|
858 |
+
"learning_rate": 0.0001930465296307087,
|
859 |
+
"loss": 0.7033,
|
860 |
+
"step": 110
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.632183908045977,
|
864 |
+
"eval_loss": 0.677044153213501,
|
865 |
+
"eval_runtime": 405.2323,
|
866 |
+
"eval_samples_per_second": 24.425,
|
867 |
+
"eval_steps_per_second": 0.382,
|
868 |
+
"step": 110
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"epoch": 0.6379310344827587,
|
872 |
+
"grad_norm": 0.06630638986825943,
|
873 |
+
"learning_rate": 0.00019279902461650866,
|
874 |
+
"loss": 0.6831,
|
875 |
+
"step": 111
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 0.6436781609195402,
|
879 |
+
"grad_norm": 0.05605092644691467,
|
880 |
+
"learning_rate": 0.00019254735574491058,
|
881 |
+
"loss": 0.6654,
|
882 |
+
"step": 112
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"epoch": 0.6494252873563219,
|
886 |
+
"grad_norm": 0.07270795851945877,
|
887 |
+
"learning_rate": 0.00019229153430820232,
|
888 |
+
"loss": 0.6744,
|
889 |
+
"step": 113
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 0.6551724137931034,
|
893 |
+
"grad_norm": 0.06772006303071976,
|
894 |
+
"learning_rate": 0.0001920315717849956,
|
895 |
+
"loss": 0.6833,
|
896 |
+
"step": 114
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.6609195402298851,
|
900 |
+
"grad_norm": 0.06296226382255554,
|
901 |
+
"learning_rate": 0.0001917674798397113,
|
902 |
+
"loss": 0.677,
|
903 |
+
"step": 115
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.6666666666666666,
|
907 |
+
"grad_norm": 0.06553810834884644,
|
908 |
+
"learning_rate": 0.00019149927032205587,
|
909 |
+
"loss": 0.6828,
|
910 |
+
"step": 116
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 0.6724137931034483,
|
914 |
+
"grad_norm": 0.057245928794145584,
|
915 |
+
"learning_rate": 0.00019122695526648968,
|
916 |
+
"loss": 0.6858,
|
917 |
+
"step": 117
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 0.6781609195402298,
|
921 |
+
"grad_norm": 0.06503669917583466,
|
922 |
+
"learning_rate": 0.00019095054689168705,
|
923 |
+
"loss": 0.6591,
|
924 |
+
"step": 118
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 0.6839080459770115,
|
928 |
+
"grad_norm": 0.05912588909268379,
|
929 |
+
"learning_rate": 0.00019067005759998797,
|
930 |
+
"loss": 0.6669,
|
931 |
+
"step": 119
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 0.6896551724137931,
|
935 |
+
"grad_norm": 0.06517963111400604,
|
936 |
+
"learning_rate": 0.0001903854999768417,
|
937 |
+
"loss": 0.6815,
|
938 |
+
"step": 120
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.6896551724137931,
|
942 |
+
"eval_loss": 0.6735538244247437,
|
943 |
+
"eval_runtime": 405.8319,
|
944 |
+
"eval_samples_per_second": 24.389,
|
945 |
+
"eval_steps_per_second": 0.382,
|
946 |
+
"step": 120
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 0.6954022988505747,
|
950 |
+
"grad_norm": 0.06089121848344803,
|
951 |
+
"learning_rate": 0.0001900968867902419,
|
952 |
+
"loss": 0.67,
|
953 |
+
"step": 121
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 0.7011494252873564,
|
957 |
+
"grad_norm": 0.05764375999569893,
|
958 |
+
"learning_rate": 0.00018980423099015402,
|
959 |
+
"loss": 0.6733,
|
960 |
+
"step": 122
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"epoch": 0.7068965517241379,
|
964 |
+
"grad_norm": 0.06278955936431885,
|
965 |
+
"learning_rate": 0.00018950754570793384,
|
966 |
+
"loss": 0.6702,
|
967 |
+
"step": 123
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 0.7126436781609196,
|
971 |
+
"grad_norm": 0.06360521912574768,
|
972 |
+
"learning_rate": 0.00018920684425573865,
|
973 |
+
"loss": 0.6619,
|
974 |
+
"step": 124
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.7183908045977011,
|
978 |
+
"grad_norm": 0.0599365159869194,
|
979 |
+
"learning_rate": 0.00018890214012592975,
|
980 |
+
"loss": 0.6851,
|
981 |
+
"step": 125
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.7241379310344828,
|
985 |
+
"grad_norm": 0.061885766685009,
|
986 |
+
"learning_rate": 0.000188593446990467,
|
987 |
+
"loss": 0.6346,
|
988 |
+
"step": 126
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"epoch": 0.7298850574712644,
|
992 |
+
"grad_norm": 0.061761509627103806,
|
993 |
+
"learning_rate": 0.00018828077870029552,
|
994 |
+
"loss": 0.6834,
|
995 |
+
"step": 127
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 0.735632183908046,
|
999 |
+
"grad_norm": 0.075982965528965,
|
1000 |
+
"learning_rate": 0.00018796414928472417,
|
1001 |
+
"loss": 0.6279,
|
1002 |
+
"step": 128
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"epoch": 0.7413793103448276,
|
1006 |
+
"grad_norm": 0.05802853778004646,
|
1007 |
+
"learning_rate": 0.0001876435729507959,
|
1008 |
+
"loss": 0.6348,
|
1009 |
+
"step": 129
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 0.7471264367816092,
|
1013 |
+
"grad_norm": 0.06642711162567139,
|
1014 |
+
"learning_rate": 0.0001873190640826505,
|
1015 |
+
"loss": 0.679,
|
1016 |
+
"step": 130
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.7471264367816092,
|
1020 |
+
"eval_loss": 0.6707044243812561,
|
1021 |
+
"eval_runtime": 407.4212,
|
1022 |
+
"eval_samples_per_second": 24.294,
|
1023 |
+
"eval_steps_per_second": 0.38,
|
1024 |
+
"step": 130
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.7528735632183908,
|
1028 |
+
"grad_norm": 0.06452522426843643,
|
1029 |
+
"learning_rate": 0.00018699063724087904,
|
1030 |
+
"loss": 0.6423,
|
1031 |
+
"step": 131
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.7586206896551724,
|
1035 |
+
"grad_norm": 0.05988775193691254,
|
1036 |
+
"learning_rate": 0.00018665830716187065,
|
1037 |
+
"loss": 0.6654,
|
1038 |
+
"step": 132
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.764367816091954,
|
1042 |
+
"grad_norm": 0.059349820017814636,
|
1043 |
+
"learning_rate": 0.0001863220887571512,
|
1044 |
+
"loss": 0.6866,
|
1045 |
+
"step": 133
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.7701149425287356,
|
1049 |
+
"grad_norm": 0.06473397463560104,
|
1050 |
+
"learning_rate": 0.0001859819971127143,
|
1051 |
+
"loss": 0.7014,
|
1052 |
+
"step": 134
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.7758620689655172,
|
1056 |
+
"grad_norm": 0.06945810467004776,
|
1057 |
+
"learning_rate": 0.00018563804748834438,
|
1058 |
+
"loss": 0.6769,
|
1059 |
+
"step": 135
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.7816091954022989,
|
1063 |
+
"grad_norm": 0.06217830255627632,
|
1064 |
+
"learning_rate": 0.000185290255316932,
|
1065 |
+
"loss": 0.6821,
|
1066 |
+
"step": 136
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.7873563218390804,
|
1070 |
+
"grad_norm": 0.07021711021661758,
|
1071 |
+
"learning_rate": 0.00018493863620378122,
|
1072 |
+
"loss": 0.6614,
|
1073 |
+
"step": 137
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.7931034482758621,
|
1077 |
+
"grad_norm": 0.0640297532081604,
|
1078 |
+
"learning_rate": 0.00018458320592590975,
|
1079 |
+
"loss": 0.6699,
|
1080 |
+
"step": 138
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.7988505747126436,
|
1084 |
+
"grad_norm": 0.0640842542052269,
|
1085 |
+
"learning_rate": 0.00018422398043134067,
|
1086 |
+
"loss": 0.6795,
|
1087 |
+
"step": 139
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.8045977011494253,
|
1091 |
+
"grad_norm": 0.07371507585048676,
|
1092 |
+
"learning_rate": 0.00018386097583838714,
|
1093 |
+
"loss": 0.6571,
|
1094 |
+
"step": 140
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.8045977011494253,
|
1098 |
+
"eval_loss": 0.6682229042053223,
|
1099 |
+
"eval_runtime": 404.8694,
|
1100 |
+
"eval_samples_per_second": 24.447,
|
1101 |
+
"eval_steps_per_second": 0.383,
|
1102 |
+
"step": 140
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.8103448275862069,
|
1106 |
+
"grad_norm": 0.06185011938214302,
|
1107 |
+
"learning_rate": 0.00018349420843492888,
|
1108 |
+
"loss": 0.6524,
|
1109 |
+
"step": 141
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.8160919540229885,
|
1113 |
+
"grad_norm": 0.08427827060222626,
|
1114 |
+
"learning_rate": 0.00018312369467768166,
|
1115 |
+
"loss": 0.6685,
|
1116 |
+
"step": 142
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.8218390804597702,
|
1120 |
+
"grad_norm": 0.06529568880796432,
|
1121 |
+
"learning_rate": 0.0001827494511914587,
|
1122 |
+
"loss": 0.659,
|
1123 |
+
"step": 143
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.8275862068965517,
|
1127 |
+
"grad_norm": 0.07357680797576904,
|
1128 |
+
"learning_rate": 0.0001823714947684247,
|
1129 |
+
"loss": 0.6792,
|
1130 |
+
"step": 144
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.8333333333333334,
|
1134 |
+
"grad_norm": 0.09026575833559036,
|
1135 |
+
"learning_rate": 0.00018198984236734246,
|
1136 |
+
"loss": 0.6954,
|
1137 |
+
"step": 145
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.8390804597701149,
|
1141 |
+
"grad_norm": 0.06157710403203964,
|
1142 |
+
"learning_rate": 0.000181604511112812,
|
1143 |
+
"loss": 0.6527,
|
1144 |
+
"step": 146
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.8448275862068966,
|
1148 |
+
"grad_norm": 0.08122924715280533,
|
1149 |
+
"learning_rate": 0.000181215518294502,
|
1150 |
+
"loss": 0.6571,
|
1151 |
+
"step": 147
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.8505747126436781,
|
1155 |
+
"grad_norm": 0.05926045402884483,
|
1156 |
+
"learning_rate": 0.00018082288136637422,
|
1157 |
+
"loss": 0.6773,
|
1158 |
+
"step": 148
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.8563218390804598,
|
1162 |
+
"grad_norm": 0.07869191467761993,
|
1163 |
+
"learning_rate": 0.00018042661794590023,
|
1164 |
+
"loss": 0.7066,
|
1165 |
+
"step": 149
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.8620689655172413,
|
1169 |
+
"grad_norm": 0.07564139366149902,
|
1170 |
+
"learning_rate": 0.00018002674581327094,
|
1171 |
+
"loss": 0.6491,
|
1172 |
+
"step": 150
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.8620689655172413,
|
1176 |
+
"eval_loss": 0.6660047769546509,
|
1177 |
+
"eval_runtime": 406.5581,
|
1178 |
+
"eval_samples_per_second": 24.346,
|
1179 |
+
"eval_steps_per_second": 0.381,
|
1180 |
+
"step": 150
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"epoch": 0.867816091954023,
|
1184 |
+
"grad_norm": 0.05749671533703804,
|
1185 |
+
"learning_rate": 0.00017962328291059888,
|
1186 |
+
"loss": 0.7081,
|
1187 |
+
"step": 151
|
1188 |
+
},
|
1189 |
+
{
|
1190 |
+
"epoch": 0.8735632183908046,
|
1191 |
+
"grad_norm": 0.08154609054327011,
|
1192 |
+
"learning_rate": 0.00017921624734111292,
|
1193 |
+
"loss": 0.6622,
|
1194 |
+
"step": 152
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 0.8793103448275862,
|
1198 |
+
"grad_norm": 0.08773736655712128,
|
1199 |
+
"learning_rate": 0.0001788056573683464,
|
1200 |
+
"loss": 0.6393,
|
1201 |
+
"step": 153
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"epoch": 0.8850574712643678,
|
1205 |
+
"grad_norm": 0.06756340712308884,
|
1206 |
+
"learning_rate": 0.00017839153141531718,
|
1207 |
+
"loss": 0.6384,
|
1208 |
+
"step": 154
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.8908045977011494,
|
1212 |
+
"grad_norm": 0.08763930201530457,
|
1213 |
+
"learning_rate": 0.00017797388806370132,
|
1214 |
+
"loss": 0.6512,
|
1215 |
+
"step": 155
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.896551724137931,
|
1219 |
+
"grad_norm": 0.0647486001253128,
|
1220 |
+
"learning_rate": 0.00017755274605299923,
|
1221 |
+
"loss": 0.6502,
|
1222 |
+
"step": 156
|
1223 |
+
},
|
1224 |
+
{
|
1225 |
+
"epoch": 0.9022988505747126,
|
1226 |
+
"grad_norm": 0.11679747700691223,
|
1227 |
+
"learning_rate": 0.00017712812427969485,
|
1228 |
+
"loss": 0.6666,
|
1229 |
+
"step": 157
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"epoch": 0.9080459770114943,
|
1233 |
+
"grad_norm": 0.06472433358430862,
|
1234 |
+
"learning_rate": 0.00017670004179640774,
|
1235 |
+
"loss": 0.6495,
|
1236 |
+
"step": 158
|
1237 |
+
},
|
1238 |
+
{
|
1239 |
+
"epoch": 0.9137931034482759,
|
1240 |
+
"grad_norm": 0.09902803599834442,
|
1241 |
+
"learning_rate": 0.0001762685178110382,
|
1242 |
+
"loss": 0.6747,
|
1243 |
+
"step": 159
|
1244 |
+
},
|
1245 |
+
{
|
1246 |
+
"epoch": 0.9195402298850575,
|
1247 |
+
"grad_norm": 0.06362438946962357,
|
1248 |
+
"learning_rate": 0.0001758335716859055,
|
1249 |
+
"loss": 0.7015,
|
1250 |
+
"step": 160
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.9195402298850575,
|
1254 |
+
"eval_loss": 0.663636326789856,
|
1255 |
+
"eval_runtime": 404.5915,
|
1256 |
+
"eval_samples_per_second": 24.464,
|
1257 |
+
"eval_steps_per_second": 0.383,
|
1258 |
+
"step": 160
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 0.9252873563218391,
|
1262 |
+
"grad_norm": 0.07304941862821579,
|
1263 |
+
"learning_rate": 0.00017539522293687898,
|
1264 |
+
"loss": 0.6825,
|
1265 |
+
"step": 161
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 0.9310344827586207,
|
1269 |
+
"grad_norm": 0.08923015743494034,
|
1270 |
+
"learning_rate": 0.00017495349123250242,
|
1271 |
+
"loss": 0.674,
|
1272 |
+
"step": 162
|
1273 |
+
},
|
1274 |
+
{
|
1275 |
+
"epoch": 0.9367816091954023,
|
1276 |
+
"grad_norm": 0.062135376036167145,
|
1277 |
+
"learning_rate": 0.00017450839639311162,
|
1278 |
+
"loss": 0.6477,
|
1279 |
+
"step": 163
|
1280 |
+
},
|
1281 |
+
{
|
1282 |
+
"epoch": 0.9425287356321839,
|
1283 |
+
"grad_norm": 0.1098598912358284,
|
1284 |
+
"learning_rate": 0.00017405995838994494,
|
1285 |
+
"loss": 0.6742,
|
1286 |
+
"step": 164
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.9482758620689655,
|
1290 |
+
"grad_norm": 0.06947540491819382,
|
1291 |
+
"learning_rate": 0.00017360819734424715,
|
1292 |
+
"loss": 0.6509,
|
1293 |
+
"step": 165
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.9540229885057471,
|
1297 |
+
"grad_norm": 0.11134368181228638,
|
1298 |
+
"learning_rate": 0.0001731531335263669,
|
1299 |
+
"loss": 0.6602,
|
1300 |
+
"step": 166
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 0.9597701149425287,
|
1304 |
+
"grad_norm": 0.06717904657125473,
|
1305 |
+
"learning_rate": 0.00017269478735484683,
|
1306 |
+
"loss": 0.6697,
|
1307 |
+
"step": 167
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.9655172413793104,
|
1311 |
+
"grad_norm": 0.06737629324197769,
|
1312 |
+
"learning_rate": 0.00017223317939550753,
|
1313 |
+
"loss": 0.6636,
|
1314 |
+
"step": 168
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.9712643678160919,
|
1318 |
+
"grad_norm": 0.08558724075555801,
|
1319 |
+
"learning_rate": 0.00017176833036052495,
|
1320 |
+
"loss": 0.6733,
|
1321 |
+
"step": 169
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 0.9770114942528736,
|
1325 |
+
"grad_norm": 0.07127804309129715,
|
1326 |
+
"learning_rate": 0.0001713002611075007,
|
1327 |
+
"loss": 0.6523,
|
1328 |
+
"step": 170
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.9770114942528736,
|
1332 |
+
"eval_loss": 0.6618800759315491,
|
1333 |
+
"eval_runtime": 411.375,
|
1334 |
+
"eval_samples_per_second": 24.061,
|
1335 |
+
"eval_steps_per_second": 0.377,
|
1336 |
+
"step": 170
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 0.9827586206896551,
|
1340 |
+
"grad_norm": 0.08060283958911896,
|
1341 |
+
"learning_rate": 0.0001708289926385265,
|
1342 |
+
"loss": 0.658,
|
1343 |
+
"step": 171
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 0.9885057471264368,
|
1347 |
+
"grad_norm": 0.06496579200029373,
|
1348 |
+
"learning_rate": 0.0001703545460992416,
|
1349 |
+
"loss": 0.6697,
|
1350 |
+
"step": 172
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 0.9942528735632183,
|
1354 |
+
"grad_norm": 0.0646037757396698,
|
1355 |
+
"learning_rate": 0.00016987694277788417,
|
1356 |
+
"loss": 0.6231,
|
1357 |
+
"step": 173
|
1358 |
+
},
|
1359 |
+
{
|
1360 |
+
"epoch": 1.0,
|
1361 |
+
"grad_norm": 0.08516079187393188,
|
1362 |
+
"learning_rate": 0.0001693962041043359,
|
1363 |
+
"loss": 0.6374,
|
1364 |
+
"step": 174
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 1.0057471264367817,
|
1368 |
+
"grad_norm": 0.06554190069437027,
|
1369 |
+
"learning_rate": 0.00016891235164916065,
|
1370 |
+
"loss": 0.6271,
|
1371 |
+
"step": 175
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 1.0114942528735633,
|
1375 |
+
"grad_norm": 0.06361629068851471,
|
1376 |
+
"learning_rate": 0.00016842540712263637,
|
1377 |
+
"loss": 0.649,
|
1378 |
+
"step": 176
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 1.0172413793103448,
|
1382 |
+
"grad_norm": 0.0814083069562912,
|
1383 |
+
"learning_rate": 0.00016793539237378128,
|
1384 |
+
"loss": 0.654,
|
1385 |
+
"step": 177
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 1.0229885057471264,
|
1389 |
+
"grad_norm": 0.06498701125383377,
|
1390 |
+
"learning_rate": 0.00016744232938937308,
|
1391 |
+
"loss": 0.6313,
|
1392 |
+
"step": 178
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"epoch": 1.028735632183908,
|
1396 |
+
"grad_norm": 0.11292543262243271,
|
1397 |
+
"learning_rate": 0.0001669462402929629,
|
1398 |
+
"loss": 0.6803,
|
1399 |
+
"step": 179
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"epoch": 1.0344827586206897,
|
1403 |
+
"grad_norm": 0.0661187544465065,
|
1404 |
+
"learning_rate": 0.00016644714734388217,
|
1405 |
+
"loss": 0.6672,
|
1406 |
+
"step": 180
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 1.0344827586206897,
|
1410 |
+
"eval_loss": 0.6602174043655396,
|
1411 |
+
"eval_runtime": 410.2914,
|
1412 |
+
"eval_samples_per_second": 24.124,
|
1413 |
+
"eval_steps_per_second": 0.378,
|
1414 |
+
"step": 180
|
1415 |
+
},
|
1416 |
+
{
|
1417 |
+
"epoch": 1.0402298850574712,
|
1418 |
+
"grad_norm": 0.08441785722970963,
|
1419 |
+
"learning_rate": 0.00016594507293624425,
|
1420 |
+
"loss": 0.6257,
|
1421 |
+
"step": 181
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 1.0459770114942528,
|
1425 |
+
"grad_norm": 0.09075969457626343,
|
1426 |
+
"learning_rate": 0.00016544003959793925,
|
1427 |
+
"loss": 0.641,
|
1428 |
+
"step": 182
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 1.0517241379310345,
|
1432 |
+
"grad_norm": 0.07677901536226273,
|
1433 |
+
"learning_rate": 0.00016493206998962354,
|
1434 |
+
"loss": 0.6351,
|
1435 |
+
"step": 183
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 1.0574712643678161,
|
1439 |
+
"grad_norm": 0.09646302461624146,
|
1440 |
+
"learning_rate": 0.0001644211869037027,
|
1441 |
+
"loss": 0.6635,
|
1442 |
+
"step": 184
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 1.0632183908045978,
|
1446 |
+
"grad_norm": 0.06928115338087082,
|
1447 |
+
"learning_rate": 0.00016390741326330907,
|
1448 |
+
"loss": 0.6458,
|
1449 |
+
"step": 185
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 1.0689655172413792,
|
1453 |
+
"grad_norm": 0.1076992079615593,
|
1454 |
+
"learning_rate": 0.00016339077212127294,
|
1455 |
+
"loss": 0.6209,
|
1456 |
+
"step": 186
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 1.0747126436781609,
|
1460 |
+
"grad_norm": 0.08489565551280975,
|
1461 |
+
"learning_rate": 0.0001628712866590885,
|
1462 |
+
"loss": 0.6336,
|
1463 |
+
"step": 187
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 1.0804597701149425,
|
1467 |
+
"grad_norm": 0.11920158565044403,
|
1468 |
+
"learning_rate": 0.00016234898018587337,
|
1469 |
+
"loss": 0.6496,
|
1470 |
+
"step": 188
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 1.0862068965517242,
|
1474 |
+
"grad_norm": 0.07987701892852783,
|
1475 |
+
"learning_rate": 0.00016182387613732291,
|
1476 |
+
"loss": 0.668,
|
1477 |
+
"step": 189
|
1478 |
+
},
|
1479 |
+
{
|
1480 |
+
"epoch": 1.0919540229885056,
|
1481 |
+
"grad_norm": 0.1095438227057457,
|
1482 |
+
"learning_rate": 0.00016129599807465875,
|
1483 |
+
"loss": 0.6862,
|
1484 |
+
"step": 190
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 1.0919540229885056,
|
1488 |
+
"eval_loss": 0.6588147282600403,
|
1489 |
+
"eval_runtime": 406.5115,
|
1490 |
+
"eval_samples_per_second": 24.349,
|
1491 |
+
"eval_steps_per_second": 0.381,
|
1492 |
+
"step": 190
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"epoch": 1.0977011494252873,
|
1496 |
+
"grad_norm": 0.08076825737953186,
|
1497 |
+
"learning_rate": 0.0001607653696835713,
|
1498 |
+
"loss": 0.6367,
|
1499 |
+
"step": 191
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 1.103448275862069,
|
1503 |
+
"grad_norm": 0.09829648584127426,
|
1504 |
+
"learning_rate": 0.00016023201477315731,
|
1505 |
+
"loss": 0.6391,
|
1506 |
+
"step": 192
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 1.1091954022988506,
|
1510 |
+
"grad_norm": 0.09008080512285233,
|
1511 |
+
"learning_rate": 0.0001596959572748514,
|
1512 |
+
"loss": 0.6462,
|
1513 |
+
"step": 193
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 1.1149425287356323,
|
1517 |
+
"grad_norm": 0.07725552469491959,
|
1518 |
+
"learning_rate": 0.00015915722124135227,
|
1519 |
+
"loss": 0.6356,
|
1520 |
+
"step": 194
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 1.1206896551724137,
|
1524 |
+
"grad_norm": 0.08215273171663284,
|
1525 |
+
"learning_rate": 0.00015861583084554349,
|
1526 |
+
"loss": 0.6557,
|
1527 |
+
"step": 195
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 1.1264367816091954,
|
1531 |
+
"grad_norm": 0.07044622302055359,
|
1532 |
+
"learning_rate": 0.0001580718103794089,
|
1533 |
+
"loss": 0.6401,
|
1534 |
+
"step": 196
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"epoch": 1.132183908045977,
|
1538 |
+
"grad_norm": 0.06852877885103226,
|
1539 |
+
"learning_rate": 0.00015752518425294257,
|
1540 |
+
"loss": 0.6641,
|
1541 |
+
"step": 197
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"epoch": 1.1379310344827587,
|
1545 |
+
"grad_norm": 0.07775932550430298,
|
1546 |
+
"learning_rate": 0.00015697597699305366,
|
1547 |
+
"loss": 0.6689,
|
1548 |
+
"step": 198
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 1.1436781609195403,
|
1552 |
+
"grad_norm": 0.07384389638900757,
|
1553 |
+
"learning_rate": 0.00015642421324246568,
|
1554 |
+
"loss": 0.663,
|
1555 |
+
"step": 199
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"epoch": 1.1494252873563218,
|
1559 |
+
"grad_norm": 0.074593685567379,
|
1560 |
+
"learning_rate": 0.00015586991775861102,
|
1561 |
+
"loss": 0.6755,
|
1562 |
+
"step": 200
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 1.1494252873563218,
|
1566 |
+
"eval_loss": 0.6577329635620117,
|
1567 |
+
"eval_runtime": 406.5534,
|
1568 |
+
"eval_samples_per_second": 24.346,
|
1569 |
+
"eval_steps_per_second": 0.381,
|
1570 |
+
"step": 200
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 1.1551724137931034,
|
1574 |
+
"grad_norm": 0.07201389968395233,
|
1575 |
+
"learning_rate": 0.00015531311541251995,
|
1576 |
+
"loss": 0.62,
|
1577 |
+
"step": 201
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.160919540229885,
|
1581 |
+
"grad_norm": 0.07052464783191681,
|
1582 |
+
"learning_rate": 0.00015475383118770472,
|
1583 |
+
"loss": 0.6456,
|
1584 |
+
"step": 202
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.1666666666666667,
|
1588 |
+
"grad_norm": 0.07045558094978333,
|
1589 |
+
"learning_rate": 0.00015419209017903852,
|
1590 |
+
"loss": 0.6421,
|
1591 |
+
"step": 203
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.1724137931034484,
|
1595 |
+
"grad_norm": 0.0870729386806488,
|
1596 |
+
"learning_rate": 0.0001536279175916296,
|
1597 |
+
"loss": 0.6342,
|
1598 |
+
"step": 204
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.1781609195402298,
|
1602 |
+
"grad_norm": 0.0703926831483841,
|
1603 |
+
"learning_rate": 0.0001530613387396901,
|
1604 |
+
"loss": 0.6533,
|
1605 |
+
"step": 205
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.1839080459770115,
|
1609 |
+
"grad_norm": 0.07181324064731598,
|
1610 |
+
"learning_rate": 0.0001524923790454004,
|
1611 |
+
"loss": 0.6511,
|
1612 |
+
"step": 206
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 1.1896551724137931,
|
1616 |
+
"grad_norm": 0.07455940544605255,
|
1617 |
+
"learning_rate": 0.00015192106403776848,
|
1618 |
+
"loss": 0.6363,
|
1619 |
+
"step": 207
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 1.1954022988505748,
|
1623 |
+
"grad_norm": 0.08370154350996017,
|
1624 |
+
"learning_rate": 0.0001513474193514842,
|
1625 |
+
"loss": 0.6517,
|
1626 |
+
"step": 208
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.2011494252873562,
|
1630 |
+
"grad_norm": 0.08015818893909454,
|
1631 |
+
"learning_rate": 0.00015077147072576933,
|
1632 |
+
"loss": 0.6264,
|
1633 |
+
"step": 209
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.206896551724138,
|
1637 |
+
"grad_norm": 0.093206986784935,
|
1638 |
+
"learning_rate": 0.00015019324400322243,
|
1639 |
+
"loss": 0.6279,
|
1640 |
+
"step": 210
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.206896551724138,
|
1644 |
+
"eval_loss": 0.6562607884407043,
|
1645 |
+
"eval_runtime": 407.9222,
|
1646 |
+
"eval_samples_per_second": 24.264,
|
1647 |
+
"eval_steps_per_second": 0.38,
|
1648 |
+
"step": 210
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 1.2126436781609196,
|
1652 |
+
"grad_norm": 0.07707002758979797,
|
1653 |
+
"learning_rate": 0.00014961276512865954,
|
1654 |
+
"loss": 0.6726,
|
1655 |
+
"step": 211
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 1.2183908045977012,
|
1659 |
+
"grad_norm": 0.08275868743658066,
|
1660 |
+
"learning_rate": 0.00014903006014794983,
|
1661 |
+
"loss": 0.6493,
|
1662 |
+
"step": 212
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 1.2241379310344827,
|
1666 |
+
"grad_norm": 0.11222587525844574,
|
1667 |
+
"learning_rate": 0.00014844515520684703,
|
1668 |
+
"loss": 0.6367,
|
1669 |
+
"step": 213
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 1.2298850574712643,
|
1673 |
+
"grad_norm": 0.09210342168807983,
|
1674 |
+
"learning_rate": 0.00014785807654981627,
|
1675 |
+
"loss": 0.6734,
|
1676 |
+
"step": 214
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 1.235632183908046,
|
1680 |
+
"grad_norm": 0.08821109682321548,
|
1681 |
+
"learning_rate": 0.00014726885051885653,
|
1682 |
+
"loss": 0.6354,
|
1683 |
+
"step": 215
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 1.2413793103448276,
|
1687 |
+
"grad_norm": 0.12253956496715546,
|
1688 |
+
"learning_rate": 0.0001466775035523186,
|
1689 |
+
"loss": 0.6412,
|
1690 |
+
"step": 216
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 1.2471264367816093,
|
1694 |
+
"grad_norm": 0.08476684242486954,
|
1695 |
+
"learning_rate": 0.00014608406218371894,
|
1696 |
+
"loss": 0.6635,
|
1697 |
+
"step": 217
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 1.2528735632183907,
|
1701 |
+
"grad_norm": 0.08554086089134216,
|
1702 |
+
"learning_rate": 0.00014548855304054886,
|
1703 |
+
"loss": 0.6403,
|
1704 |
+
"step": 218
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 1.2586206896551724,
|
1708 |
+
"grad_norm": 0.10986476391553879,
|
1709 |
+
"learning_rate": 0.00014489100284308017,
|
1710 |
+
"loss": 0.6253,
|
1711 |
+
"step": 219
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 1.264367816091954,
|
1715 |
+
"grad_norm": 0.09221742302179337,
|
1716 |
+
"learning_rate": 0.00014429143840316585,
|
1717 |
+
"loss": 0.6622,
|
1718 |
+
"step": 220
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 1.264367816091954,
|
1722 |
+
"eval_loss": 0.6551185250282288,
|
1723 |
+
"eval_runtime": 408.2025,
|
1724 |
+
"eval_samples_per_second": 24.248,
|
1725 |
+
"eval_steps_per_second": 0.38,
|
1726 |
+
"step": 220
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 1.2701149425287357,
|
1730 |
+
"grad_norm": 0.08050013333559036,
|
1731 |
+
"learning_rate": 0.00014368988662303732,
|
1732 |
+
"loss": 0.6226,
|
1733 |
+
"step": 221
|
1734 |
+
},
|
1735 |
+
{
|
1736 |
+
"epoch": 1.2758620689655173,
|
1737 |
+
"grad_norm": 0.16257594525814056,
|
1738 |
+
"learning_rate": 0.00014308637449409706,
|
1739 |
+
"loss": 0.6661,
|
1740 |
+
"step": 222
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 1.2816091954022988,
|
1744 |
+
"grad_norm": 0.07793809473514557,
|
1745 |
+
"learning_rate": 0.00014248092909570774,
|
1746 |
+
"loss": 0.6243,
|
1747 |
+
"step": 223
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"epoch": 1.2873563218390804,
|
1751 |
+
"grad_norm": 0.0975632593035698,
|
1752 |
+
"learning_rate": 0.00014187357759397714,
|
1753 |
+
"loss": 0.6348,
|
1754 |
+
"step": 224
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 1.293103448275862,
|
1758 |
+
"grad_norm": 0.07041144371032715,
|
1759 |
+
"learning_rate": 0.00014126434724053913,
|
1760 |
+
"loss": 0.6386,
|
1761 |
+
"step": 225
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 1.2988505747126438,
|
1765 |
+
"grad_norm": 0.12080610543489456,
|
1766 |
+
"learning_rate": 0.00014065326537133094,
|
1767 |
+
"loss": 0.6276,
|
1768 |
+
"step": 226
|
1769 |
+
},
|
1770 |
+
{
|
1771 |
+
"epoch": 1.3045977011494254,
|
1772 |
+
"grad_norm": 0.09340126812458038,
|
1773 |
+
"learning_rate": 0.0001400403594053667,
|
1774 |
+
"loss": 0.6431,
|
1775 |
+
"step": 227
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 1.3103448275862069,
|
1779 |
+
"grad_norm": 0.09178619831800461,
|
1780 |
+
"learning_rate": 0.00013942565684350698,
|
1781 |
+
"loss": 0.6457,
|
1782 |
+
"step": 228
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"epoch": 1.3160919540229885,
|
1786 |
+
"grad_norm": 0.134804829955101,
|
1787 |
+
"learning_rate": 0.00013880918526722497,
|
1788 |
+
"loss": 0.6247,
|
1789 |
+
"step": 229
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"epoch": 1.3218390804597702,
|
1793 |
+
"grad_norm": 0.07517404854297638,
|
1794 |
+
"learning_rate": 0.00013819097233736888,
|
1795 |
+
"loss": 0.6329,
|
1796 |
+
"step": 230
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 1.3218390804597702,
|
1800 |
+
"eval_loss": 0.6541800498962402,
|
1801 |
+
"eval_runtime": 404.9523,
|
1802 |
+
"eval_samples_per_second": 24.442,
|
1803 |
+
"eval_steps_per_second": 0.383,
|
1804 |
+
"step": 230
|
1805 |
+
},
|
1806 |
+
{
|
1807 |
+
"epoch": 1.3275862068965516,
|
1808 |
+
"grad_norm": 0.1385478675365448,
|
1809 |
+
"learning_rate": 0.00013757104579292082,
|
1810 |
+
"loss": 0.6697,
|
1811 |
+
"step": 231
|
1812 |
+
},
|
1813 |
+
{
|
1814 |
+
"epoch": 1.3333333333333333,
|
1815 |
+
"grad_norm": 0.08156240731477737,
|
1816 |
+
"learning_rate": 0.00013694943344975212,
|
1817 |
+
"loss": 0.6279,
|
1818 |
+
"step": 232
|
1819 |
+
},
|
1820 |
+
{
|
1821 |
+
"epoch": 1.339080459770115,
|
1822 |
+
"grad_norm": 0.10937108844518661,
|
1823 |
+
"learning_rate": 0.00013632616319937522,
|
1824 |
+
"loss": 0.6487,
|
1825 |
+
"step": 233
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"epoch": 1.3448275862068966,
|
1829 |
+
"grad_norm": 0.12300366908311844,
|
1830 |
+
"learning_rate": 0.00013570126300769232,
|
1831 |
+
"loss": 0.6456,
|
1832 |
+
"step": 234
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 1.3505747126436782,
|
1836 |
+
"grad_norm": 0.07707128673791885,
|
1837 |
+
"learning_rate": 0.0001350747609137404,
|
1838 |
+
"loss": 0.6302,
|
1839 |
+
"step": 235
|
1840 |
+
},
|
1841 |
+
{
|
1842 |
+
"epoch": 1.3563218390804597,
|
1843 |
+
"grad_norm": 0.0954674631357193,
|
1844 |
+
"learning_rate": 0.0001344466850284333,
|
1845 |
+
"loss": 0.6184,
|
1846 |
+
"step": 236
|
1847 |
+
},
|
1848 |
+
{
|
1849 |
+
"epoch": 1.3620689655172413,
|
1850 |
+
"grad_norm": 0.10317125916481018,
|
1851 |
+
"learning_rate": 0.00013381706353330014,
|
1852 |
+
"loss": 0.6618,
|
1853 |
+
"step": 237
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 1.367816091954023,
|
1857 |
+
"grad_norm": 0.08765599131584167,
|
1858 |
+
"learning_rate": 0.0001331859246792211,
|
1859 |
+
"loss": 0.6191,
|
1860 |
+
"step": 238
|
1861 |
+
},
|
1862 |
+
{
|
1863 |
+
"epoch": 1.3735632183908046,
|
1864 |
+
"grad_norm": 0.10305018723011017,
|
1865 |
+
"learning_rate": 0.0001325532967851596,
|
1866 |
+
"loss": 0.6397,
|
1867 |
+
"step": 239
|
1868 |
+
},
|
1869 |
+
{
|
1870 |
+
"epoch": 1.3793103448275863,
|
1871 |
+
"grad_norm": 0.08769567310810089,
|
1872 |
+
"learning_rate": 0.00013191920823689177,
|
1873 |
+
"loss": 0.6559,
|
1874 |
+
"step": 240
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 1.3793103448275863,
|
1878 |
+
"eval_loss": 0.6528159379959106,
|
1879 |
+
"eval_runtime": 407.607,
|
1880 |
+
"eval_samples_per_second": 24.283,
|
1881 |
+
"eval_steps_per_second": 0.38,
|
1882 |
+
"step": 240
|
1883 |
+
},
|
1884 |
+
{
|
1885 |
+
"epoch": 1.3850574712643677,
|
1886 |
+
"grad_norm": 0.09783841669559479,
|
1887 |
+
"learning_rate": 0.00013128368748573273,
|
1888 |
+
"loss": 0.6736,
|
1889 |
+
"step": 241
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 1.3908045977011494,
|
1893 |
+
"grad_norm": 0.08165410906076431,
|
1894 |
+
"learning_rate": 0.00013064676304726,
|
1895 |
+
"loss": 0.6467,
|
1896 |
+
"step": 242
|
1897 |
+
},
|
1898 |
+
{
|
1899 |
+
"epoch": 1.396551724137931,
|
1900 |
+
"grad_norm": 0.10928885638713837,
|
1901 |
+
"learning_rate": 0.0001300084635000341,
|
1902 |
+
"loss": 0.6956,
|
1903 |
+
"step": 243
|
1904 |
+
},
|
1905 |
+
{
|
1906 |
+
"epoch": 1.4022988505747127,
|
1907 |
+
"grad_norm": 0.09388460218906403,
|
1908 |
+
"learning_rate": 0.000129368817484316,
|
1909 |
+
"loss": 0.6474,
|
1910 |
+
"step": 244
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 1.4080459770114944,
|
1914 |
+
"grad_norm": 0.08257792145013809,
|
1915 |
+
"learning_rate": 0.0001287278537007824,
|
1916 |
+
"loss": 0.6301,
|
1917 |
+
"step": 245
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 1.4137931034482758,
|
1921 |
+
"grad_norm": 0.07570406794548035,
|
1922 |
+
"learning_rate": 0.00012808560090923758,
|
1923 |
+
"loss": 0.6238,
|
1924 |
+
"step": 246
|
1925 |
+
},
|
1926 |
+
{
|
1927 |
+
"epoch": 1.4195402298850575,
|
1928 |
+
"grad_norm": 0.097509004175663,
|
1929 |
+
"learning_rate": 0.00012744208792732324,
|
1930 |
+
"loss": 0.6383,
|
1931 |
+
"step": 247
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 1.4252873563218391,
|
1935 |
+
"grad_norm": 0.07778667658567429,
|
1936 |
+
"learning_rate": 0.00012679734362922528,
|
1937 |
+
"loss": 0.642,
|
1938 |
+
"step": 248
|
1939 |
+
},
|
1940 |
+
{
|
1941 |
+
"epoch": 1.4310344827586206,
|
1942 |
+
"grad_norm": 0.08389262855052948,
|
1943 |
+
"learning_rate": 0.00012615139694437835,
|
1944 |
+
"loss": 0.6152,
|
1945 |
+
"step": 249
|
1946 |
+
},
|
1947 |
+
{
|
1948 |
+
"epoch": 1.4367816091954024,
|
1949 |
+
"grad_norm": 0.08290071040391922,
|
1950 |
+
"learning_rate": 0.00012550427685616765,
|
1951 |
+
"loss": 0.6389,
|
1952 |
+
"step": 250
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 1.4367816091954024,
|
1956 |
+
"eval_loss": 0.6516815423965454,
|
1957 |
+
"eval_runtime": 411.2719,
|
1958 |
+
"eval_samples_per_second": 24.067,
|
1959 |
+
"eval_steps_per_second": 0.377,
|
1960 |
+
"step": 250
|
1961 |
+
},
|
1962 |
+
{
|
1963 |
+
"epoch": 1.4425287356321839,
|
1964 |
+
"grad_norm": 0.08134254068136215,
|
1965 |
+
"learning_rate": 0.00012485601240062869,
|
1966 |
+
"loss": 0.6365,
|
1967 |
+
"step": 251
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 1.4482758620689655,
|
1971 |
+
"grad_norm": 0.11836981773376465,
|
1972 |
+
"learning_rate": 0.00012420663266514417,
|
1973 |
+
"loss": 0.6345,
|
1974 |
+
"step": 252
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 1.4540229885057472,
|
1978 |
+
"grad_norm": 0.07629366219043732,
|
1979 |
+
"learning_rate": 0.0001235561667871391,
|
1980 |
+
"loss": 0.6365,
|
1981 |
+
"step": 253
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 1.4597701149425286,
|
1985 |
+
"grad_norm": 0.09142953902482986,
|
1986 |
+
"learning_rate": 0.0001229046439527732,
|
1987 |
+
"loss": 0.6316,
|
1988 |
+
"step": 254
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 1.4655172413793103,
|
1992 |
+
"grad_norm": 0.12063657492399216,
|
1993 |
+
"learning_rate": 0.00012225209339563145,
|
1994 |
+
"loss": 0.6221,
|
1995 |
+
"step": 255
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 1.471264367816092,
|
1999 |
+
"grad_norm": 0.07524894177913666,
|
2000 |
+
"learning_rate": 0.00012159854439541245,
|
2001 |
+
"loss": 0.6485,
|
2002 |
+
"step": 256
|
2003 |
+
},
|
2004 |
+
{
|
2005 |
+
"epoch": 1.4770114942528736,
|
2006 |
+
"grad_norm": 0.08384133875370026,
|
2007 |
+
"learning_rate": 0.00012094402627661447,
|
2008 |
+
"loss": 0.6607,
|
2009 |
+
"step": 257
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 1.4827586206896552,
|
2013 |
+
"grad_norm": 0.08039575815200806,
|
2014 |
+
"learning_rate": 0.00012028856840721974,
|
2015 |
+
"loss": 0.6764,
|
2016 |
+
"step": 258
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"epoch": 1.4885057471264367,
|
2020 |
+
"grad_norm": 0.09115740656852722,
|
2021 |
+
"learning_rate": 0.00011963220019737691,
|
2022 |
+
"loss": 0.6587,
|
2023 |
+
"step": 259
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 1.4942528735632183,
|
2027 |
+
"grad_norm": 0.08291927725076675,
|
2028 |
+
"learning_rate": 0.00011897495109808107,
|
2029 |
+
"loss": 0.6476,
|
2030 |
+
"step": 260
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 1.4942528735632183,
|
2034 |
+
"eval_loss": 0.6506026983261108,
|
2035 |
+
"eval_runtime": 407.6949,
|
2036 |
+
"eval_samples_per_second": 24.278,
|
2037 |
+
"eval_steps_per_second": 0.38,
|
2038 |
+
"step": 260
|
2039 |
+
},
|
2040 |
+
{
|
2041 |
+
"epoch": 1.5,
|
2042 |
+
"grad_norm": 0.09679999202489853,
|
2043 |
+
"learning_rate": 0.00011831685059985262,
|
2044 |
+
"loss": 0.6378,
|
2045 |
+
"step": 261
|
2046 |
+
},
|
2047 |
+
{
|
2048 |
+
"epoch": 1.5057471264367817,
|
2049 |
+
"grad_norm": 0.07858405262231827,
|
2050 |
+
"learning_rate": 0.00011765792823141384,
|
2051 |
+
"loss": 0.6679,
|
2052 |
+
"step": 262
|
2053 |
+
},
|
2054 |
+
{
|
2055 |
+
"epoch": 1.5114942528735633,
|
2056 |
+
"grad_norm": 0.07274090498685837,
|
2057 |
+
"learning_rate": 0.00011699821355836409,
|
2058 |
+
"loss": 0.6199,
|
2059 |
+
"step": 263
|
2060 |
+
},
|
2061 |
+
{
|
2062 |
+
"epoch": 1.5172413793103448,
|
2063 |
+
"grad_norm": 0.11862179636955261,
|
2064 |
+
"learning_rate": 0.00011633773618185302,
|
2065 |
+
"loss": 0.6369,
|
2066 |
+
"step": 264
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 1.5229885057471264,
|
2070 |
+
"grad_norm": 0.08915189653635025,
|
2071 |
+
"learning_rate": 0.00011567652573725262,
|
2072 |
+
"loss": 0.6248,
|
2073 |
+
"step": 265
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 1.528735632183908,
|
2077 |
+
"grad_norm": 0.12184260040521622,
|
2078 |
+
"learning_rate": 0.00011501461189282733,
|
2079 |
+
"loss": 0.645,
|
2080 |
+
"step": 266
|
2081 |
+
},
|
2082 |
+
{
|
2083 |
+
"epoch": 1.5344827586206895,
|
2084 |
+
"grad_norm": 0.09939936548471451,
|
2085 |
+
"learning_rate": 0.00011435202434840287,
|
2086 |
+
"loss": 0.6382,
|
2087 |
+
"step": 267
|
2088 |
+
},
|
2089 |
+
{
|
2090 |
+
"epoch": 1.5402298850574714,
|
2091 |
+
"grad_norm": 0.07167995721101761,
|
2092 |
+
"learning_rate": 0.0001136887928340336,
|
2093 |
+
"loss": 0.6064,
|
2094 |
+
"step": 268
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 1.5459770114942528,
|
2098 |
+
"grad_norm": 0.09978017210960388,
|
2099 |
+
"learning_rate": 0.00011302494710866857,
|
2100 |
+
"loss": 0.6467,
|
2101 |
+
"step": 269
|
2102 |
+
},
|
2103 |
+
{
|
2104 |
+
"epoch": 1.5517241379310345,
|
2105 |
+
"grad_norm": 0.09598653763532639,
|
2106 |
+
"learning_rate": 0.00011236051695881633,
|
2107 |
+
"loss": 0.6412,
|
2108 |
+
"step": 270
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 1.5517241379310345,
|
2112 |
+
"eval_loss": 0.6497076749801636,
|
2113 |
+
"eval_runtime": 407.5672,
|
2114 |
+
"eval_samples_per_second": 24.286,
|
2115 |
+
"eval_steps_per_second": 0.38,
|
2116 |
+
"step": 270
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 1.5574712643678161,
|
2120 |
+
"grad_norm": 0.08118661493062973,
|
2121 |
+
"learning_rate": 0.00011169553219720828,
|
2122 |
+
"loss": 0.6659,
|
2123 |
+
"step": 271
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 1.5632183908045976,
|
2127 |
+
"grad_norm": 0.11158329248428345,
|
2128 |
+
"learning_rate": 0.00011103002266146096,
|
2129 |
+
"loss": 0.6578,
|
2130 |
+
"step": 272
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 1.5689655172413794,
|
2134 |
+
"grad_norm": 0.12230509519577026,
|
2135 |
+
"learning_rate": 0.0001103640182127375,
|
2136 |
+
"loss": 0.6187,
|
2137 |
+
"step": 273
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 1.5747126436781609,
|
2141 |
+
"grad_norm": 0.07973505556583405,
|
2142 |
+
"learning_rate": 0.00010969754873440743,
|
2143 |
+
"loss": 0.6507,
|
2144 |
+
"step": 274
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 1.5804597701149425,
|
2148 |
+
"grad_norm": 0.07436943054199219,
|
2149 |
+
"learning_rate": 0.00010903064413070612,
|
2150 |
+
"loss": 0.6381,
|
2151 |
+
"step": 275
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 1.5862068965517242,
|
2155 |
+
"grad_norm": 0.0804380401968956,
|
2156 |
+
"learning_rate": 0.00010836333432539272,
|
2157 |
+
"loss": 0.6302,
|
2158 |
+
"step": 276
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 1.5919540229885056,
|
2162 |
+
"grad_norm": 0.07640023529529572,
|
2163 |
+
"learning_rate": 0.00010769564926040769,
|
2164 |
+
"loss": 0.618,
|
2165 |
+
"step": 277
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 1.5977011494252875,
|
2169 |
+
"grad_norm": 0.0787947028875351,
|
2170 |
+
"learning_rate": 0.0001070276188945293,
|
2171 |
+
"loss": 0.6308,
|
2172 |
+
"step": 278
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 1.603448275862069,
|
2176 |
+
"grad_norm": 0.08764500916004181,
|
2177 |
+
"learning_rate": 0.00010635927320202928,
|
2178 |
+
"loss": 0.6316,
|
2179 |
+
"step": 279
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 1.6091954022988506,
|
2183 |
+
"grad_norm": 0.07885821908712387,
|
2184 |
+
"learning_rate": 0.00010569064217132791,
|
2185 |
+
"loss": 0.6232,
|
2186 |
+
"step": 280
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 1.6091954022988506,
|
2190 |
+
"eval_loss": 0.6484516859054565,
|
2191 |
+
"eval_runtime": 406.5349,
|
2192 |
+
"eval_samples_per_second": 24.347,
|
2193 |
+
"eval_steps_per_second": 0.381,
|
2194 |
+
"step": 280
|
2195 |
+
},
|
2196 |
+
{
|
2197 |
+
"epoch": 1.6149425287356323,
|
2198 |
+
"grad_norm": 0.08910427987575531,
|
2199 |
+
"learning_rate": 0.00010502175580364857,
|
2200 |
+
"loss": 0.6207,
|
2201 |
+
"step": 281
|
2202 |
+
},
|
2203 |
+
{
|
2204 |
+
"epoch": 1.6206896551724137,
|
2205 |
+
"grad_norm": 0.08195802569389343,
|
2206 |
+
"learning_rate": 0.00010435264411167148,
|
2207 |
+
"loss": 0.6604,
|
2208 |
+
"step": 282
|
2209 |
+
},
|
2210 |
+
{
|
2211 |
+
"epoch": 1.6264367816091954,
|
2212 |
+
"grad_norm": 0.09276524186134338,
|
2213 |
+
"learning_rate": 0.0001036833371181871,
|
2214 |
+
"loss": 0.6444,
|
2215 |
+
"step": 283
|
2216 |
+
},
|
2217 |
+
{
|
2218 |
+
"epoch": 1.632183908045977,
|
2219 |
+
"grad_norm": 0.07577691972255707,
|
2220 |
+
"learning_rate": 0.00010301386485474889,
|
2221 |
+
"loss": 0.6439,
|
2222 |
+
"step": 284
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 1.6379310344827587,
|
2226 |
+
"grad_norm": 0.07871613651514053,
|
2227 |
+
"learning_rate": 0.00010234425736032607,
|
2228 |
+
"loss": 0.639,
|
2229 |
+
"step": 285
|
2230 |
+
},
|
2231 |
+
{
|
2232 |
+
"epoch": 1.6436781609195403,
|
2233 |
+
"grad_norm": 0.07570876181125641,
|
2234 |
+
"learning_rate": 0.00010167454467995549,
|
2235 |
+
"loss": 0.6056,
|
2236 |
+
"step": 286
|
2237 |
+
},
|
2238 |
+
{
|
2239 |
+
"epoch": 1.6494252873563218,
|
2240 |
+
"grad_norm": 0.09836837649345398,
|
2241 |
+
"learning_rate": 0.00010100475686339379,
|
2242 |
+
"loss": 0.6341,
|
2243 |
+
"step": 287
|
2244 |
+
},
|
2245 |
+
{
|
2246 |
+
"epoch": 1.6551724137931034,
|
2247 |
+
"grad_norm": 0.08796896785497665,
|
2248 |
+
"learning_rate": 0.00010033492396376878,
|
2249 |
+
"loss": 0.6193,
|
2250 |
+
"step": 288
|
2251 |
+
},
|
2252 |
+
{
|
2253 |
+
"epoch": 1.660919540229885,
|
2254 |
+
"grad_norm": 0.07815764099359512,
|
2255 |
+
"learning_rate": 9.966507603623125e-05,
|
2256 |
+
"loss": 0.6227,
|
2257 |
+
"step": 289
|
2258 |
+
},
|
2259 |
+
{
|
2260 |
+
"epoch": 1.6666666666666665,
|
2261 |
+
"grad_norm": 0.13016292452812195,
|
2262 |
+
"learning_rate": 9.899524313660624e-05,
|
2263 |
+
"loss": 0.6243,
|
2264 |
+
"step": 290
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 1.6666666666666665,
|
2268 |
+
"eval_loss": 0.6477526426315308,
|
2269 |
+
"eval_runtime": 405.0855,
|
2270 |
+
"eval_samples_per_second": 24.434,
|
2271 |
+
"eval_steps_per_second": 0.383,
|
2272 |
+
"step": 290
|
2273 |
+
},
|
2274 |
+
{
|
2275 |
+
"epoch": 1.6724137931034484,
|
2276 |
+
"grad_norm": 0.09747885912656784,
|
2277 |
+
"learning_rate": 9.832545532004454e-05,
|
2278 |
+
"loss": 0.6328,
|
2279 |
+
"step": 291
|
2280 |
+
},
|
2281 |
+
{
|
2282 |
+
"epoch": 1.6781609195402298,
|
2283 |
+
"grad_norm": 0.10131366550922394,
|
2284 |
+
"learning_rate": 9.765574263967396e-05,
|
2285 |
+
"loss": 0.6212,
|
2286 |
+
"step": 292
|
2287 |
+
},
|
2288 |
+
{
|
2289 |
+
"epoch": 1.6839080459770115,
|
2290 |
+
"grad_norm": 0.1203976571559906,
|
2291 |
+
"learning_rate": 9.698613514525116e-05,
|
2292 |
+
"loss": 0.6563,
|
2293 |
+
"step": 293
|
2294 |
+
},
|
2295 |
+
{
|
2296 |
+
"epoch": 1.6896551724137931,
|
2297 |
+
"grad_norm": 0.07119957357645035,
|
2298 |
+
"learning_rate": 9.631666288181293e-05,
|
2299 |
+
"loss": 0.6278,
|
2300 |
+
"step": 294
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 1.6954022988505746,
|
2304 |
+
"grad_norm": 0.11370845884084702,
|
2305 |
+
"learning_rate": 9.564735588832856e-05,
|
2306 |
+
"loss": 0.6376,
|
2307 |
+
"step": 295
|
2308 |
+
},
|
2309 |
+
{
|
2310 |
+
"epoch": 1.7011494252873565,
|
2311 |
+
"grad_norm": 0.07851264625787735,
|
2312 |
+
"learning_rate": 9.497824419635144e-05,
|
2313 |
+
"loss": 0.6149,
|
2314 |
+
"step": 296
|
2315 |
+
},
|
2316 |
+
{
|
2317 |
+
"epoch": 1.706896551724138,
|
2318 |
+
"grad_norm": 0.0818655788898468,
|
2319 |
+
"learning_rate": 9.430935782867212e-05,
|
2320 |
+
"loss": 0.6048,
|
2321 |
+
"step": 297
|
2322 |
+
},
|
2323 |
+
{
|
2324 |
+
"epoch": 1.7126436781609196,
|
2325 |
+
"grad_norm": 0.07335007190704346,
|
2326 |
+
"learning_rate": 9.364072679797073e-05,
|
2327 |
+
"loss": 0.6292,
|
2328 |
+
"step": 298
|
2329 |
+
},
|
2330 |
+
{
|
2331 |
+
"epoch": 1.7183908045977012,
|
2332 |
+
"grad_norm": 0.07759315520524979,
|
2333 |
+
"learning_rate": 9.297238110547074e-05,
|
2334 |
+
"loss": 0.6464,
|
2335 |
+
"step": 299
|
2336 |
+
},
|
2337 |
+
{
|
2338 |
+
"epoch": 1.7241379310344827,
|
2339 |
+
"grad_norm": 0.0833640992641449,
|
2340 |
+
"learning_rate": 9.230435073959232e-05,
|
2341 |
+
"loss": 0.6467,
|
2342 |
+
"step": 300
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 1.7241379310344827,
|
2346 |
+
"eval_loss": 0.6469475030899048,
|
2347 |
+
"eval_runtime": 408.9385,
|
2348 |
+
"eval_samples_per_second": 24.204,
|
2349 |
+
"eval_steps_per_second": 0.379,
|
2350 |
+
"step": 300
|
2351 |
+
},
|
2352 |
+
{
|
2353 |
+
"epoch": 1.7298850574712645,
|
2354 |
+
"grad_norm": 0.08030898869037628,
|
2355 |
+
"learning_rate": 9.163666567460733e-05,
|
2356 |
+
"loss": 0.6268,
|
2357 |
+
"step": 301
|
2358 |
+
},
|
2359 |
+
{
|
2360 |
+
"epoch": 1.735632183908046,
|
2361 |
+
"grad_norm": 0.08017026633024216,
|
2362 |
+
"learning_rate": 9.096935586929392e-05,
|
2363 |
+
"loss": 0.6367,
|
2364 |
+
"step": 302
|
2365 |
+
},
|
2366 |
+
{
|
2367 |
+
"epoch": 1.7413793103448276,
|
2368 |
+
"grad_norm": 0.07945988327264786,
|
2369 |
+
"learning_rate": 9.030245126559262e-05,
|
2370 |
+
"loss": 0.6318,
|
2371 |
+
"step": 303
|
2372 |
+
},
|
2373 |
+
{
|
2374 |
+
"epoch": 1.7471264367816093,
|
2375 |
+
"grad_norm": 0.09426795691251755,
|
2376 |
+
"learning_rate": 8.963598178726254e-05,
|
2377 |
+
"loss": 0.6399,
|
2378 |
+
"step": 304
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 1.7528735632183907,
|
2382 |
+
"grad_norm": 0.08182523399591446,
|
2383 |
+
"learning_rate": 8.896997733853903e-05,
|
2384 |
+
"loss": 0.6203,
|
2385 |
+
"step": 305
|
2386 |
+
},
|
2387 |
+
{
|
2388 |
+
"epoch": 1.7586206896551724,
|
2389 |
+
"grad_norm": 0.07778620719909668,
|
2390 |
+
"learning_rate": 8.830446780279176e-05,
|
2391 |
+
"loss": 0.6816,
|
2392 |
+
"step": 306
|
2393 |
+
},
|
2394 |
+
{
|
2395 |
+
"epoch": 1.764367816091954,
|
2396 |
+
"grad_norm": 0.11482707411050797,
|
2397 |
+
"learning_rate": 8.763948304118368e-05,
|
2398 |
+
"loss": 0.6442,
|
2399 |
+
"step": 307
|
2400 |
+
},
|
2401 |
+
{
|
2402 |
+
"epoch": 1.7701149425287355,
|
2403 |
+
"grad_norm": 0.07546856999397278,
|
2404 |
+
"learning_rate": 8.697505289133145e-05,
|
2405 |
+
"loss": 0.6445,
|
2406 |
+
"step": 308
|
2407 |
+
},
|
2408 |
+
{
|
2409 |
+
"epoch": 1.7758620689655173,
|
2410 |
+
"grad_norm": 0.11665278673171997,
|
2411 |
+
"learning_rate": 8.631120716596641e-05,
|
2412 |
+
"loss": 0.6374,
|
2413 |
+
"step": 309
|
2414 |
+
},
|
2415 |
+
{
|
2416 |
+
"epoch": 1.7816091954022988,
|
2417 |
+
"grad_norm": 0.1181105300784111,
|
2418 |
+
"learning_rate": 8.564797565159714e-05,
|
2419 |
+
"loss": 0.6146,
|
2420 |
+
"step": 310
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 1.7816091954022988,
|
2424 |
+
"eval_loss": 0.6459708213806152,
|
2425 |
+
"eval_runtime": 405.0602,
|
2426 |
+
"eval_samples_per_second": 24.436,
|
2427 |
+
"eval_steps_per_second": 0.383,
|
2428 |
+
"step": 310
|
2429 |
+
},
|
2430 |
+
{
|
2431 |
+
"epoch": 1.7873563218390804,
|
2432 |
+
"grad_norm": 0.07805997133255005,
|
2433 |
+
"learning_rate": 8.498538810717267e-05,
|
2434 |
+
"loss": 0.6679,
|
2435 |
+
"step": 311
|
2436 |
+
},
|
2437 |
+
{
|
2438 |
+
"epoch": 1.793103448275862,
|
2439 |
+
"grad_norm": 0.08421120047569275,
|
2440 |
+
"learning_rate": 8.432347426274739e-05,
|
2441 |
+
"loss": 0.642,
|
2442 |
+
"step": 312
|
2443 |
+
},
|
2444 |
+
{
|
2445 |
+
"epoch": 1.7988505747126435,
|
2446 |
+
"grad_norm": 0.10425391793251038,
|
2447 |
+
"learning_rate": 8.366226381814697e-05,
|
2448 |
+
"loss": 0.6354,
|
2449 |
+
"step": 313
|
2450 |
+
},
|
2451 |
+
{
|
2452 |
+
"epoch": 1.8045977011494254,
|
2453 |
+
"grad_norm": 0.08861584216356277,
|
2454 |
+
"learning_rate": 8.300178644163594e-05,
|
2455 |
+
"loss": 0.6397,
|
2456 |
+
"step": 314
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 1.8103448275862069,
|
2460 |
+
"grad_norm": 0.08726219832897186,
|
2461 |
+
"learning_rate": 8.234207176858614e-05,
|
2462 |
+
"loss": 0.6474,
|
2463 |
+
"step": 315
|
2464 |
+
},
|
2465 |
+
{
|
2466 |
+
"epoch": 1.8160919540229885,
|
2467 |
+
"grad_norm": 0.12218604981899261,
|
2468 |
+
"learning_rate": 8.16831494001474e-05,
|
2469 |
+
"loss": 0.6459,
|
2470 |
+
"step": 316
|
2471 |
+
},
|
2472 |
+
{
|
2473 |
+
"epoch": 1.8218390804597702,
|
2474 |
+
"grad_norm": 0.08113615214824677,
|
2475 |
+
"learning_rate": 8.102504890191892e-05,
|
2476 |
+
"loss": 0.6114,
|
2477 |
+
"step": 317
|
2478 |
+
},
|
2479 |
+
{
|
2480 |
+
"epoch": 1.8275862068965516,
|
2481 |
+
"grad_norm": 0.08763635903596878,
|
2482 |
+
"learning_rate": 8.036779980262311e-05,
|
2483 |
+
"loss": 0.6602,
|
2484 |
+
"step": 318
|
2485 |
+
},
|
2486 |
+
{
|
2487 |
+
"epoch": 1.8333333333333335,
|
2488 |
+
"grad_norm": 0.1053246557712555,
|
2489 |
+
"learning_rate": 7.971143159278026e-05,
|
2490 |
+
"loss": 0.6182,
|
2491 |
+
"step": 319
|
2492 |
+
},
|
2493 |
+
{
|
2494 |
+
"epoch": 1.839080459770115,
|
2495 |
+
"grad_norm": 0.09522312134504318,
|
2496 |
+
"learning_rate": 7.905597372338558e-05,
|
2497 |
+
"loss": 0.6386,
|
2498 |
+
"step": 320
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 1.839080459770115,
|
2502 |
+
"eval_loss": 0.6449984908103943,
|
2503 |
+
"eval_runtime": 405.9165,
|
2504 |
+
"eval_samples_per_second": 24.384,
|
2505 |
+
"eval_steps_per_second": 0.382,
|
2506 |
+
"step": 320
|
2507 |
+
},
|
2508 |
+
{
|
2509 |
+
"epoch": 1.8448275862068966,
|
2510 |
+
"grad_norm": 0.09493348747491837,
|
2511 |
+
"learning_rate": 7.840145560458756e-05,
|
2512 |
+
"loss": 0.6522,
|
2513 |
+
"step": 321
|
2514 |
+
},
|
2515 |
+
{
|
2516 |
+
"epoch": 1.8505747126436782,
|
2517 |
+
"grad_norm": 0.10554379224777222,
|
2518 |
+
"learning_rate": 7.774790660436858e-05,
|
2519 |
+
"loss": 0.6401,
|
2520 |
+
"step": 322
|
2521 |
+
},
|
2522 |
+
{
|
2523 |
+
"epoch": 1.8563218390804597,
|
2524 |
+
"grad_norm": 0.09237196296453476,
|
2525 |
+
"learning_rate": 7.709535604722684e-05,
|
2526 |
+
"loss": 0.6315,
|
2527 |
+
"step": 323
|
2528 |
+
},
|
2529 |
+
{
|
2530 |
+
"epoch": 1.8620689655172413,
|
2531 |
+
"grad_norm": 0.07175464183092117,
|
2532 |
+
"learning_rate": 7.644383321286094e-05,
|
2533 |
+
"loss": 0.6559,
|
2534 |
+
"step": 324
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 1.867816091954023,
|
2538 |
+
"grad_norm": 0.08578918129205704,
|
2539 |
+
"learning_rate": 7.579336733485584e-05,
|
2540 |
+
"loss": 0.6297,
|
2541 |
+
"step": 325
|
2542 |
+
},
|
2543 |
+
{
|
2544 |
+
"epoch": 1.8735632183908046,
|
2545 |
+
"grad_norm": 0.14390091598033905,
|
2546 |
+
"learning_rate": 7.514398759937135e-05,
|
2547 |
+
"loss": 0.6155,
|
2548 |
+
"step": 326
|
2549 |
+
},
|
2550 |
+
{
|
2551 |
+
"epoch": 1.8793103448275863,
|
2552 |
+
"grad_norm": 0.07774030417203903,
|
2553 |
+
"learning_rate": 7.449572314383237e-05,
|
2554 |
+
"loss": 0.6551,
|
2555 |
+
"step": 327
|
2556 |
+
},
|
2557 |
+
{
|
2558 |
+
"epoch": 1.8850574712643677,
|
2559 |
+
"grad_norm": 0.07927459478378296,
|
2560 |
+
"learning_rate": 7.384860305562172e-05,
|
2561 |
+
"loss": 0.6312,
|
2562 |
+
"step": 328
|
2563 |
+
},
|
2564 |
+
{
|
2565 |
+
"epoch": 1.8908045977011494,
|
2566 |
+
"grad_norm": 0.11287631094455719,
|
2567 |
+
"learning_rate": 7.320265637077473e-05,
|
2568 |
+
"loss": 0.66,
|
2569 |
+
"step": 329
|
2570 |
+
},
|
2571 |
+
{
|
2572 |
+
"epoch": 1.896551724137931,
|
2573 |
+
"grad_norm": 0.09955232590436935,
|
2574 |
+
"learning_rate": 7.255791207267679e-05,
|
2575 |
+
"loss": 0.6456,
|
2576 |
+
"step": 330
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 1.896551724137931,
|
2580 |
+
"eval_loss": 0.6442980766296387,
|
2581 |
+
"eval_runtime": 404.2901,
|
2582 |
+
"eval_samples_per_second": 24.482,
|
2583 |
+
"eval_steps_per_second": 0.383,
|
2584 |
+
"step": 330
|
2585 |
+
},
|
2586 |
+
{
|
2587 |
+
"epoch": 1.9022988505747125,
|
2588 |
+
"grad_norm": 0.07881880551576614,
|
2589 |
+
"learning_rate": 7.191439909076243e-05,
|
2590 |
+
"loss": 0.6398,
|
2591 |
+
"step": 331
|
2592 |
+
},
|
2593 |
+
{
|
2594 |
+
"epoch": 1.9080459770114944,
|
2595 |
+
"grad_norm": 0.15244217216968536,
|
2596 |
+
"learning_rate": 7.127214629921765e-05,
|
2597 |
+
"loss": 0.6614,
|
2598 |
+
"step": 332
|
2599 |
+
},
|
2600 |
+
{
|
2601 |
+
"epoch": 1.9137931034482758,
|
2602 |
+
"grad_norm": 0.07337264716625214,
|
2603 |
+
"learning_rate": 7.0631182515684e-05,
|
2604 |
+
"loss": 0.6294,
|
2605 |
+
"step": 333
|
2606 |
+
},
|
2607 |
+
{
|
2608 |
+
"epoch": 1.9195402298850575,
|
2609 |
+
"grad_norm": 0.07102935016155243,
|
2610 |
+
"learning_rate": 6.999153649996595e-05,
|
2611 |
+
"loss": 0.6237,
|
2612 |
+
"step": 334
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 1.9252873563218391,
|
2616 |
+
"grad_norm": 0.09349462389945984,
|
2617 |
+
"learning_rate": 6.935323695274002e-05,
|
2618 |
+
"loss": 0.6051,
|
2619 |
+
"step": 335
|
2620 |
+
},
|
2621 |
+
{
|
2622 |
+
"epoch": 1.9310344827586206,
|
2623 |
+
"grad_norm": 0.0851803794503212,
|
2624 |
+
"learning_rate": 6.871631251426728e-05,
|
2625 |
+
"loss": 0.6548,
|
2626 |
+
"step": 336
|
2627 |
+
},
|
2628 |
+
{
|
2629 |
+
"epoch": 1.9367816091954024,
|
2630 |
+
"grad_norm": 0.08571562170982361,
|
2631 |
+
"learning_rate": 6.808079176310827e-05,
|
2632 |
+
"loss": 0.6136,
|
2633 |
+
"step": 337
|
2634 |
+
},
|
2635 |
+
{
|
2636 |
+
"epoch": 1.9425287356321839,
|
2637 |
+
"grad_norm": 0.0772768035531044,
|
2638 |
+
"learning_rate": 6.744670321484043e-05,
|
2639 |
+
"loss": 0.6668,
|
2640 |
+
"step": 338
|
2641 |
+
},
|
2642 |
+
{
|
2643 |
+
"epoch": 1.9482758620689655,
|
2644 |
+
"grad_norm": 0.08812547475099564,
|
2645 |
+
"learning_rate": 6.681407532077895e-05,
|
2646 |
+
"loss": 0.6427,
|
2647 |
+
"step": 339
|
2648 |
+
},
|
2649 |
+
{
|
2650 |
+
"epoch": 1.9540229885057472,
|
2651 |
+
"grad_norm": 0.09011583775281906,
|
2652 |
+
"learning_rate": 6.618293646669986e-05,
|
2653 |
+
"loss": 0.6402,
|
2654 |
+
"step": 340
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 1.9540229885057472,
|
2658 |
+
"eval_loss": 0.6436823606491089,
|
2659 |
+
"eval_runtime": 413.0204,
|
2660 |
+
"eval_samples_per_second": 23.965,
|
2661 |
+
"eval_steps_per_second": 0.375,
|
2662 |
+
"step": 340
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 1.9597701149425286,
|
2666 |
+
"grad_norm": 0.08234158158302307,
|
2667 |
+
"learning_rate": 6.555331497156672e-05,
|
2668 |
+
"loss": 0.6362,
|
2669 |
+
"step": 341
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 1.9655172413793105,
|
2673 |
+
"grad_norm": 0.0780014768242836,
|
2674 |
+
"learning_rate": 6.492523908625959e-05,
|
2675 |
+
"loss": 0.6454,
|
2676 |
+
"step": 342
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 1.971264367816092,
|
2680 |
+
"grad_norm": 0.08458276093006134,
|
2681 |
+
"learning_rate": 6.42987369923077e-05,
|
2682 |
+
"loss": 0.6587,
|
2683 |
+
"step": 343
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 1.9770114942528736,
|
2687 |
+
"grad_norm": 0.11979149281978607,
|
2688 |
+
"learning_rate": 6.367383680062478e-05,
|
2689 |
+
"loss": 0.6369,
|
2690 |
+
"step": 344
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 1.9827586206896552,
|
2694 |
+
"grad_norm": 0.08782167732715607,
|
2695 |
+
"learning_rate": 6.30505665502479e-05,
|
2696 |
+
"loss": 0.6382,
|
2697 |
+
"step": 345
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 1.9885057471264367,
|
2701 |
+
"grad_norm": 0.07542918622493744,
|
2702 |
+
"learning_rate": 6.242895420707917e-05,
|
2703 |
+
"loss": 0.6238,
|
2704 |
+
"step": 346
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 1.9942528735632183,
|
2708 |
+
"grad_norm": 0.09390002489089966,
|
2709 |
+
"learning_rate": 6.180902766263113e-05,
|
2710 |
+
"loss": 0.632,
|
2711 |
+
"step": 347
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 2.0,
|
2715 |
+
"grad_norm": 0.10154885053634644,
|
2716 |
+
"learning_rate": 6.119081473277501e-05,
|
2717 |
+
"loss": 0.6078,
|
2718 |
+
"step": 348
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 2.0057471264367814,
|
2722 |
+
"grad_norm": 0.09035320580005646,
|
2723 |
+
"learning_rate": 6.057434315649304e-05,
|
2724 |
+
"loss": 0.6331,
|
2725 |
+
"step": 349
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 2.0114942528735633,
|
2729 |
+
"grad_norm": 0.1151895746588707,
|
2730 |
+
"learning_rate": 5.99596405946333e-05,
|
2731 |
+
"loss": 0.6455,
|
2732 |
+
"step": 350
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 2.0114942528735633,
|
2736 |
+
"eval_loss": 0.6433547139167786,
|
2737 |
+
"eval_runtime": 409.0063,
|
2738 |
+
"eval_samples_per_second": 24.2,
|
2739 |
+
"eval_steps_per_second": 0.379,
|
2740 |
+
"step": 350
|
2741 |
+
},
|
2742 |
+
{
|
2743 |
+
"epoch": 2.0172413793103448,
|
2744 |
+
"grad_norm": 0.10666079819202423,
|
2745 |
+
"learning_rate": 5.9346734628669065e-05,
|
2746 |
+
"loss": 0.6473,
|
2747 |
+
"step": 351
|
2748 |
+
},
|
2749 |
+
{
|
2750 |
+
"epoch": 2.0229885057471266,
|
2751 |
+
"grad_norm": 0.09095422178506851,
|
2752 |
+
"learning_rate": 5.873565275946088e-05,
|
2753 |
+
"loss": 0.6335,
|
2754 |
+
"step": 352
|
2755 |
+
},
|
2756 |
+
{
|
2757 |
+
"epoch": 2.028735632183908,
|
2758 |
+
"grad_norm": 0.09256957471370697,
|
2759 |
+
"learning_rate": 5.8126422406022885e-05,
|
2760 |
+
"loss": 0.5969,
|
2761 |
+
"step": 353
|
2762 |
+
},
|
2763 |
+
{
|
2764 |
+
"epoch": 2.0344827586206895,
|
2765 |
+
"grad_norm": 0.1397576928138733,
|
2766 |
+
"learning_rate": 5.7519070904292247e-05,
|
2767 |
+
"loss": 0.5919,
|
2768 |
+
"step": 354
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 2.0402298850574714,
|
2772 |
+
"grad_norm": 0.0867573469877243,
|
2773 |
+
"learning_rate": 5.691362550590297e-05,
|
2774 |
+
"loss": 0.5909,
|
2775 |
+
"step": 355
|
2776 |
+
},
|
2777 |
+
{
|
2778 |
+
"epoch": 2.045977011494253,
|
2779 |
+
"grad_norm": 0.07953327894210815,
|
2780 |
+
"learning_rate": 5.631011337696271e-05,
|
2781 |
+
"loss": 0.5959,
|
2782 |
+
"step": 356
|
2783 |
+
},
|
2784 |
+
{
|
2785 |
+
"epoch": 2.0517241379310347,
|
2786 |
+
"grad_norm": 0.09324570745229721,
|
2787 |
+
"learning_rate": 5.570856159683418e-05,
|
2788 |
+
"loss": 0.6216,
|
2789 |
+
"step": 357
|
2790 |
+
},
|
2791 |
+
{
|
2792 |
+
"epoch": 2.057471264367816,
|
2793 |
+
"grad_norm": 0.10510014742612839,
|
2794 |
+
"learning_rate": 5.510899715691984e-05,
|
2795 |
+
"loss": 0.6172,
|
2796 |
+
"step": 358
|
2797 |
+
},
|
2798 |
+
{
|
2799 |
+
"epoch": 2.0632183908045976,
|
2800 |
+
"grad_norm": 0.08669542521238327,
|
2801 |
+
"learning_rate": 5.451144695945116e-05,
|
2802 |
+
"loss": 0.5931,
|
2803 |
+
"step": 359
|
2804 |
+
},
|
2805 |
+
{
|
2806 |
+
"epoch": 2.0689655172413794,
|
2807 |
+
"grad_norm": 0.09054102748632431,
|
2808 |
+
"learning_rate": 5.3915937816281095e-05,
|
2809 |
+
"loss": 0.5888,
|
2810 |
+
"step": 360
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 2.0689655172413794,
|
2814 |
+
"eval_loss": 0.643742024898529,
|
2815 |
+
"eval_runtime": 404.2471,
|
2816 |
+
"eval_samples_per_second": 24.485,
|
2817 |
+
"eval_steps_per_second": 0.383,
|
2818 |
+
"step": 360
|
2819 |
+
},
|
2820 |
+
{
|
2821 |
+
"epoch": 2.074712643678161,
|
2822 |
+
"grad_norm": 0.11839323490858078,
|
2823 |
+
"learning_rate": 5.3322496447681414e-05,
|
2824 |
+
"loss": 0.6093,
|
2825 |
+
"step": 361
|
2826 |
+
},
|
2827 |
+
{
|
2828 |
+
"epoch": 2.0804597701149423,
|
2829 |
+
"grad_norm": 0.1050933375954628,
|
2830 |
+
"learning_rate": 5.273114948114346e-05,
|
2831 |
+
"loss": 0.6247,
|
2832 |
+
"step": 362
|
2833 |
+
},
|
2834 |
+
{
|
2835 |
+
"epoch": 2.086206896551724,
|
2836 |
+
"grad_norm": 0.09781333059072495,
|
2837 |
+
"learning_rate": 5.214192345018374e-05,
|
2838 |
+
"loss": 0.6274,
|
2839 |
+
"step": 363
|
2840 |
+
},
|
2841 |
+
{
|
2842 |
+
"epoch": 2.0919540229885056,
|
2843 |
+
"grad_norm": 0.09329628199338913,
|
2844 |
+
"learning_rate": 5.1554844793153e-05,
|
2845 |
+
"loss": 0.6243,
|
2846 |
+
"step": 364
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 2.0977011494252875,
|
2850 |
+
"grad_norm": 0.08716364949941635,
|
2851 |
+
"learning_rate": 5.096993985205023e-05,
|
2852 |
+
"loss": 0.6149,
|
2853 |
+
"step": 365
|
2854 |
+
},
|
2855 |
+
{
|
2856 |
+
"epoch": 2.103448275862069,
|
2857 |
+
"grad_norm": 0.09969545155763626,
|
2858 |
+
"learning_rate": 5.0387234871340486e-05,
|
2859 |
+
"loss": 0.635,
|
2860 |
+
"step": 366
|
2861 |
+
},
|
2862 |
+
{
|
2863 |
+
"epoch": 2.1091954022988504,
|
2864 |
+
"grad_norm": 0.10841623693704605,
|
2865 |
+
"learning_rate": 4.980675599677757e-05,
|
2866 |
+
"loss": 0.6544,
|
2867 |
+
"step": 367
|
2868 |
+
},
|
2869 |
+
{
|
2870 |
+
"epoch": 2.1149425287356323,
|
2871 |
+
"grad_norm": 0.07902085781097412,
|
2872 |
+
"learning_rate": 4.9228529274230695e-05,
|
2873 |
+
"loss": 0.6144,
|
2874 |
+
"step": 368
|
2875 |
+
},
|
2876 |
+
{
|
2877 |
+
"epoch": 2.1206896551724137,
|
2878 |
+
"grad_norm": 0.11440268158912659,
|
2879 |
+
"learning_rate": 4.865258064851579e-05,
|
2880 |
+
"loss": 0.6217,
|
2881 |
+
"step": 369
|
2882 |
+
},
|
2883 |
+
{
|
2884 |
+
"epoch": 2.1264367816091956,
|
2885 |
+
"grad_norm": 0.09594007581472397,
|
2886 |
+
"learning_rate": 4.807893596223152e-05,
|
2887 |
+
"loss": 0.6267,
|
2888 |
+
"step": 370
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 2.1264367816091956,
|
2892 |
+
"eval_loss": 0.6434890031814575,
|
2893 |
+
"eval_runtime": 404.1508,
|
2894 |
+
"eval_samples_per_second": 24.491,
|
2895 |
+
"eval_steps_per_second": 0.384,
|
2896 |
+
"step": 370
|
2897 |
+
},
|
2898 |
+
{
|
2899 |
+
"epoch": 2.132183908045977,
|
2900 |
+
"grad_norm": 0.09025128185749054,
|
2901 |
+
"learning_rate": 4.75076209545996e-05,
|
2902 |
+
"loss": 0.6122,
|
2903 |
+
"step": 371
|
2904 |
+
},
|
2905 |
+
{
|
2906 |
+
"epoch": 2.1379310344827585,
|
2907 |
+
"grad_norm": 0.09677668660879135,
|
2908 |
+
"learning_rate": 4.693866126030995e-05,
|
2909 |
+
"loss": 0.6339,
|
2910 |
+
"step": 372
|
2911 |
+
},
|
2912 |
+
{
|
2913 |
+
"epoch": 2.1436781609195403,
|
2914 |
+
"grad_norm": 0.08178266882896423,
|
2915 |
+
"learning_rate": 4.637208240837042e-05,
|
2916 |
+
"loss": 0.6392,
|
2917 |
+
"step": 373
|
2918 |
+
},
|
2919 |
+
{
|
2920 |
+
"epoch": 2.1494252873563218,
|
2921 |
+
"grad_norm": 0.10616466403007507,
|
2922 |
+
"learning_rate": 4.5807909820961494e-05,
|
2923 |
+
"loss": 0.6207,
|
2924 |
+
"step": 374
|
2925 |
+
},
|
2926 |
+
{
|
2927 |
+
"epoch": 2.1551724137931036,
|
2928 |
+
"grad_norm": 0.08333076536655426,
|
2929 |
+
"learning_rate": 4.5246168812295286e-05,
|
2930 |
+
"loss": 0.6148,
|
2931 |
+
"step": 375
|
2932 |
+
},
|
2933 |
+
{
|
2934 |
+
"epoch": 2.160919540229885,
|
2935 |
+
"grad_norm": 0.1016552671790123,
|
2936 |
+
"learning_rate": 4.468688458748006e-05,
|
2937 |
+
"loss": 0.6306,
|
2938 |
+
"step": 376
|
2939 |
+
},
|
2940 |
+
{
|
2941 |
+
"epoch": 2.1666666666666665,
|
2942 |
+
"grad_norm": 0.08546506613492966,
|
2943 |
+
"learning_rate": 4.413008224138897e-05,
|
2944 |
+
"loss": 0.606,
|
2945 |
+
"step": 377
|
2946 |
+
},
|
2947 |
+
{
|
2948 |
+
"epoch": 2.1724137931034484,
|
2949 |
+
"grad_norm": 0.08369904011487961,
|
2950 |
+
"learning_rate": 4.357578675753432e-05,
|
2951 |
+
"loss": 0.6007,
|
2952 |
+
"step": 378
|
2953 |
+
},
|
2954 |
+
{
|
2955 |
+
"epoch": 2.17816091954023,
|
2956 |
+
"grad_norm": 0.08523935824632645,
|
2957 |
+
"learning_rate": 4.302402300694636e-05,
|
2958 |
+
"loss": 0.5884,
|
2959 |
+
"step": 379
|
2960 |
+
},
|
2961 |
+
{
|
2962 |
+
"epoch": 2.1839080459770113,
|
2963 |
+
"grad_norm": 0.0944519191980362,
|
2964 |
+
"learning_rate": 4.247481574705744e-05,
|
2965 |
+
"loss": 0.6292,
|
2966 |
+
"step": 380
|
2967 |
+
},
|
2968 |
+
{
|
2969 |
+
"epoch": 2.1839080459770113,
|
2970 |
+
"eval_loss": 0.6433520913124084,
|
2971 |
+
"eval_runtime": 404.2218,
|
2972 |
+
"eval_samples_per_second": 24.487,
|
2973 |
+
"eval_steps_per_second": 0.383,
|
2974 |
+
"step": 380
|
2975 |
+
},
|
2976 |
+
{
|
2977 |
+
"epoch": 2.189655172413793,
|
2978 |
+
"grad_norm": 0.11311980336904526,
|
2979 |
+
"learning_rate": 4.1928189620591116e-05,
|
2980 |
+
"loss": 0.6103,
|
2981 |
+
"step": 381
|
2982 |
+
},
|
2983 |
+
{
|
2984 |
+
"epoch": 2.1954022988505746,
|
2985 |
+
"grad_norm": 0.08662451803684235,
|
2986 |
+
"learning_rate": 4.138416915445655e-05,
|
2987 |
+
"loss": 0.5852,
|
2988 |
+
"step": 382
|
2989 |
+
},
|
2990 |
+
{
|
2991 |
+
"epoch": 2.2011494252873565,
|
2992 |
+
"grad_norm": 0.09417479485273361,
|
2993 |
+
"learning_rate": 4.084277875864776e-05,
|
2994 |
+
"loss": 0.6467,
|
2995 |
+
"step": 383
|
2996 |
+
},
|
2997 |
+
{
|
2998 |
+
"epoch": 2.206896551724138,
|
2999 |
+
"grad_norm": 0.09818896651268005,
|
3000 |
+
"learning_rate": 4.030404272514864e-05,
|
3001 |
+
"loss": 0.6112,
|
3002 |
+
"step": 384
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 2.2126436781609193,
|
3006 |
+
"grad_norm": 0.08806431293487549,
|
3007 |
+
"learning_rate": 3.9767985226842696e-05,
|
3008 |
+
"loss": 0.5822,
|
3009 |
+
"step": 385
|
3010 |
+
},
|
3011 |
+
{
|
3012 |
+
"epoch": 2.218390804597701,
|
3013 |
+
"grad_norm": 0.0837361216545105,
|
3014 |
+
"learning_rate": 3.923463031642872e-05,
|
3015 |
+
"loss": 0.6137,
|
3016 |
+
"step": 386
|
3017 |
+
},
|
3018 |
+
{
|
3019 |
+
"epoch": 2.2241379310344827,
|
3020 |
+
"grad_norm": 0.10712449252605438,
|
3021 |
+
"learning_rate": 3.870400192534128e-05,
|
3022 |
+
"loss": 0.602,
|
3023 |
+
"step": 387
|
3024 |
+
},
|
3025 |
+
{
|
3026 |
+
"epoch": 2.2298850574712645,
|
3027 |
+
"grad_norm": 0.11590448766946793,
|
3028 |
+
"learning_rate": 3.81761238626771e-05,
|
3029 |
+
"loss": 0.6215,
|
3030 |
+
"step": 388
|
3031 |
+
},
|
3032 |
+
{
|
3033 |
+
"epoch": 2.235632183908046,
|
3034 |
+
"grad_norm": 0.08264652639627457,
|
3035 |
+
"learning_rate": 3.7651019814126654e-05,
|
3036 |
+
"loss": 0.6002,
|
3037 |
+
"step": 389
|
3038 |
+
},
|
3039 |
+
{
|
3040 |
+
"epoch": 2.2413793103448274,
|
3041 |
+
"grad_norm": 0.08986306935548782,
|
3042 |
+
"learning_rate": 3.7128713340911535e-05,
|
3043 |
+
"loss": 0.6058,
|
3044 |
+
"step": 390
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 2.2413793103448274,
|
3048 |
+
"eval_loss": 0.6431533098220825,
|
3049 |
+
"eval_runtime": 419.2567,
|
3050 |
+
"eval_samples_per_second": 23.608,
|
3051 |
+
"eval_steps_per_second": 0.37,
|
3052 |
+
"step": 390
|
3053 |
+
},
|
3054 |
+
{
|
3055 |
+
"epoch": 2.2471264367816093,
|
3056 |
+
"grad_norm": 0.3949902057647705,
|
3057 |
+
"learning_rate": 3.660922787872706e-05,
|
3058 |
+
"loss": 0.643,
|
3059 |
+
"step": 391
|
3060 |
+
},
|
3061 |
+
{
|
3062 |
+
"epoch": 2.2528735632183907,
|
3063 |
+
"grad_norm": 0.09183293581008911,
|
3064 |
+
"learning_rate": 3.609258673669097e-05,
|
3065 |
+
"loss": 0.5931,
|
3066 |
+
"step": 392
|
3067 |
+
},
|
3068 |
+
{
|
3069 |
+
"epoch": 2.2586206896551726,
|
3070 |
+
"grad_norm": 0.0786626785993576,
|
3071 |
+
"learning_rate": 3.557881309629729e-05,
|
3072 |
+
"loss": 0.5795,
|
3073 |
+
"step": 393
|
3074 |
+
},
|
3075 |
+
{
|
3076 |
+
"epoch": 2.264367816091954,
|
3077 |
+
"grad_norm": 0.08318330347537994,
|
3078 |
+
"learning_rate": 3.5067930010376484e-05,
|
3079 |
+
"loss": 0.6173,
|
3080 |
+
"step": 394
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 2.2701149425287355,
|
3084 |
+
"grad_norm": 0.09149078279733658,
|
3085 |
+
"learning_rate": 3.455996040206076e-05,
|
3086 |
+
"loss": 0.6238,
|
3087 |
+
"step": 395
|
3088 |
+
},
|
3089 |
+
{
|
3090 |
+
"epoch": 2.2758620689655173,
|
3091 |
+
"grad_norm": 0.09578599780797958,
|
3092 |
+
"learning_rate": 3.4054927063755796e-05,
|
3093 |
+
"loss": 0.6264,
|
3094 |
+
"step": 396
|
3095 |
+
},
|
3096 |
+
{
|
3097 |
+
"epoch": 2.281609195402299,
|
3098 |
+
"grad_norm": 0.08735264092683792,
|
3099 |
+
"learning_rate": 3.355285265611784e-05,
|
3100 |
+
"loss": 0.6269,
|
3101 |
+
"step": 397
|
3102 |
+
},
|
3103 |
+
{
|
3104 |
+
"epoch": 2.2873563218390807,
|
3105 |
+
"grad_norm": 0.0886816754937172,
|
3106 |
+
"learning_rate": 3.305375970703711e-05,
|
3107 |
+
"loss": 0.6043,
|
3108 |
+
"step": 398
|
3109 |
+
},
|
3110 |
+
{
|
3111 |
+
"epoch": 2.293103448275862,
|
3112 |
+
"grad_norm": 0.07559609413146973,
|
3113 |
+
"learning_rate": 3.2557670610626925e-05,
|
3114 |
+
"loss": 0.6416,
|
3115 |
+
"step": 399
|
3116 |
+
},
|
3117 |
+
{
|
3118 |
+
"epoch": 2.2988505747126435,
|
3119 |
+
"grad_norm": 0.11379113793373108,
|
3120 |
+
"learning_rate": 3.206460762621873e-05,
|
3121 |
+
"loss": 0.6221,
|
3122 |
+
"step": 400
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 2.2988505747126435,
|
3126 |
+
"eval_loss": 0.6427375078201294,
|
3127 |
+
"eval_runtime": 405.8229,
|
3128 |
+
"eval_samples_per_second": 24.39,
|
3129 |
+
"eval_steps_per_second": 0.382,
|
3130 |
+
"step": 400
|
3131 |
+
},
|
3132 |
+
{
|
3133 |
+
"epoch": 2.3045977011494254,
|
3134 |
+
"grad_norm": 0.08930199593305588,
|
3135 |
+
"learning_rate": 3.157459287736362e-05,
|
3136 |
+
"loss": 0.599,
|
3137 |
+
"step": 401
|
3138 |
+
},
|
3139 |
+
{
|
3140 |
+
"epoch": 2.310344827586207,
|
3141 |
+
"grad_norm": 0.11189960688352585,
|
3142 |
+
"learning_rate": 3.108764835083938e-05,
|
3143 |
+
"loss": 0.6243,
|
3144 |
+
"step": 402
|
3145 |
+
},
|
3146 |
+
{
|
3147 |
+
"epoch": 2.3160919540229887,
|
3148 |
+
"grad_norm": 0.0793476328253746,
|
3149 |
+
"learning_rate": 3.0603795895664124e-05,
|
3150 |
+
"loss": 0.615,
|
3151 |
+
"step": 403
|
3152 |
+
},
|
3153 |
+
{
|
3154 |
+
"epoch": 2.32183908045977,
|
3155 |
+
"grad_norm": 0.0860418751835823,
|
3156 |
+
"learning_rate": 3.0123057222115836e-05,
|
3157 |
+
"loss": 0.5968,
|
3158 |
+
"step": 404
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 2.3275862068965516,
|
3162 |
+
"grad_norm": 0.08753317594528198,
|
3163 |
+
"learning_rate": 2.964545390075841e-05,
|
3164 |
+
"loss": 0.6192,
|
3165 |
+
"step": 405
|
3166 |
+
},
|
3167 |
+
{
|
3168 |
+
"epoch": 2.3333333333333335,
|
3169 |
+
"grad_norm": 0.09598301351070404,
|
3170 |
+
"learning_rate": 2.9171007361473514e-05,
|
3171 |
+
"loss": 0.6237,
|
3172 |
+
"step": 406
|
3173 |
+
},
|
3174 |
+
{
|
3175 |
+
"epoch": 2.339080459770115,
|
3176 |
+
"grad_norm": 0.10627751052379608,
|
3177 |
+
"learning_rate": 2.8699738892499328e-05,
|
3178 |
+
"loss": 0.6123,
|
3179 |
+
"step": 407
|
3180 |
+
},
|
3181 |
+
{
|
3182 |
+
"epoch": 2.344827586206897,
|
3183 |
+
"grad_norm": 0.08839675039052963,
|
3184 |
+
"learning_rate": 2.8231669639475067e-05,
|
3185 |
+
"loss": 0.6123,
|
3186 |
+
"step": 408
|
3187 |
+
},
|
3188 |
+
{
|
3189 |
+
"epoch": 2.3505747126436782,
|
3190 |
+
"grad_norm": 0.08533503860235214,
|
3191 |
+
"learning_rate": 2.776682060449247e-05,
|
3192 |
+
"loss": 0.6251,
|
3193 |
+
"step": 409
|
3194 |
+
},
|
3195 |
+
{
|
3196 |
+
"epoch": 2.3563218390804597,
|
3197 |
+
"grad_norm": 0.10517686605453491,
|
3198 |
+
"learning_rate": 2.7305212645153212e-05,
|
3199 |
+
"loss": 0.6254,
|
3200 |
+
"step": 410
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 2.3563218390804597,
|
3204 |
+
"eval_loss": 0.6428195238113403,
|
3205 |
+
"eval_runtime": 404.1758,
|
3206 |
+
"eval_samples_per_second": 24.489,
|
3207 |
+
"eval_steps_per_second": 0.383,
|
3208 |
+
"step": 410
|
3209 |
+
},
|
3210 |
+
{
|
3211 |
+
"epoch": 2.3620689655172415,
|
3212 |
+
"grad_norm": 0.10578128695487976,
|
3213 |
+
"learning_rate": 2.6846866473633125e-05,
|
3214 |
+
"loss": 0.6216,
|
3215 |
+
"step": 411
|
3216 |
+
},
|
3217 |
+
{
|
3218 |
+
"epoch": 2.367816091954023,
|
3219 |
+
"grad_norm": 0.10083532333374023,
|
3220 |
+
"learning_rate": 2.6391802655752853e-05,
|
3221 |
+
"loss": 0.6052,
|
3222 |
+
"step": 412
|
3223 |
+
},
|
3224 |
+
{
|
3225 |
+
"epoch": 2.3735632183908044,
|
3226 |
+
"grad_norm": 0.08413968980312347,
|
3227 |
+
"learning_rate": 2.594004161005511e-05,
|
3228 |
+
"loss": 0.6007,
|
3229 |
+
"step": 413
|
3230 |
+
},
|
3231 |
+
{
|
3232 |
+
"epoch": 2.3793103448275863,
|
3233 |
+
"grad_norm": 0.08840201050043106,
|
3234 |
+
"learning_rate": 2.549160360688838e-05,
|
3235 |
+
"loss": 0.5876,
|
3236 |
+
"step": 414
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 2.3850574712643677,
|
3240 |
+
"grad_norm": 0.09680577367544174,
|
3241 |
+
"learning_rate": 2.50465087674976e-05,
|
3242 |
+
"loss": 0.6183,
|
3243 |
+
"step": 415
|
3244 |
+
},
|
3245 |
+
{
|
3246 |
+
"epoch": 2.3908045977011496,
|
3247 |
+
"grad_norm": 0.09196774661540985,
|
3248 |
+
"learning_rate": 2.4604777063121033e-05,
|
3249 |
+
"loss": 0.613,
|
3250 |
+
"step": 416
|
3251 |
+
},
|
3252 |
+
{
|
3253 |
+
"epoch": 2.396551724137931,
|
3254 |
+
"grad_norm": 0.0849708616733551,
|
3255 |
+
"learning_rate": 2.4166428314094514e-05,
|
3256 |
+
"loss": 0.6443,
|
3257 |
+
"step": 417
|
3258 |
+
},
|
3259 |
+
{
|
3260 |
+
"epoch": 2.4022988505747125,
|
3261 |
+
"grad_norm": 0.09316956251859665,
|
3262 |
+
"learning_rate": 2.3731482188961818e-05,
|
3263 |
+
"loss": 0.6062,
|
3264 |
+
"step": 418
|
3265 |
+
},
|
3266 |
+
{
|
3267 |
+
"epoch": 2.4080459770114944,
|
3268 |
+
"grad_norm": 0.08482903987169266,
|
3269 |
+
"learning_rate": 2.32999582035923e-05,
|
3270 |
+
"loss": 0.6099,
|
3271 |
+
"step": 419
|
3272 |
+
},
|
3273 |
+
{
|
3274 |
+
"epoch": 2.413793103448276,
|
3275 |
+
"grad_norm": 0.08352029323577881,
|
3276 |
+
"learning_rate": 2.287187572030516e-05,
|
3277 |
+
"loss": 0.6178,
|
3278 |
+
"step": 420
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 2.413793103448276,
|
3282 |
+
"eval_loss": 0.6422638297080994,
|
3283 |
+
"eval_runtime": 404.4609,
|
3284 |
+
"eval_samples_per_second": 24.472,
|
3285 |
+
"eval_steps_per_second": 0.383,
|
3286 |
+
"step": 420
|
3287 |
+
},
|
3288 |
+
{
|
3289 |
+
"epoch": 2.4195402298850572,
|
3290 |
+
"grad_norm": 0.09856913238763809,
|
3291 |
+
"learning_rate": 2.244725394700079e-05,
|
3292 |
+
"loss": 0.6166,
|
3293 |
+
"step": 421
|
3294 |
+
},
|
3295 |
+
{
|
3296 |
+
"epoch": 2.425287356321839,
|
3297 |
+
"grad_norm": 0.10127527266740799,
|
3298 |
+
"learning_rate": 2.202611193629869e-05,
|
3299 |
+
"loss": 0.6195,
|
3300 |
+
"step": 422
|
3301 |
+
},
|
3302 |
+
{
|
3303 |
+
"epoch": 2.4310344827586206,
|
3304 |
+
"grad_norm": 0.09415800124406815,
|
3305 |
+
"learning_rate": 2.160846858468285e-05,
|
3306 |
+
"loss": 0.6157,
|
3307 |
+
"step": 423
|
3308 |
+
},
|
3309 |
+
{
|
3310 |
+
"epoch": 2.4367816091954024,
|
3311 |
+
"grad_norm": 0.08563528954982758,
|
3312 |
+
"learning_rate": 2.1194342631653607e-05,
|
3313 |
+
"loss": 0.6212,
|
3314 |
+
"step": 424
|
3315 |
+
},
|
3316 |
+
{
|
3317 |
+
"epoch": 2.442528735632184,
|
3318 |
+
"grad_norm": 0.0861605629324913,
|
3319 |
+
"learning_rate": 2.0783752658887066e-05,
|
3320 |
+
"loss": 0.6095,
|
3321 |
+
"step": 425
|
3322 |
+
},
|
3323 |
+
{
|
3324 |
+
"epoch": 2.4482758620689653,
|
3325 |
+
"grad_norm": 0.1125798374414444,
|
3326 |
+
"learning_rate": 2.0376717089401164e-05,
|
3327 |
+
"loss": 0.606,
|
3328 |
+
"step": 426
|
3329 |
+
},
|
3330 |
+
{
|
3331 |
+
"epoch": 2.454022988505747,
|
3332 |
+
"grad_norm": 0.09633134305477142,
|
3333 |
+
"learning_rate": 1.9973254186729086e-05,
|
3334 |
+
"loss": 0.6109,
|
3335 |
+
"step": 427
|
3336 |
+
},
|
3337 |
+
{
|
3338 |
+
"epoch": 2.4597701149425286,
|
3339 |
+
"grad_norm": 0.08123010396957397,
|
3340 |
+
"learning_rate": 1.9573382054099786e-05,
|
3341 |
+
"loss": 0.5896,
|
3342 |
+
"step": 428
|
3343 |
+
},
|
3344 |
+
{
|
3345 |
+
"epoch": 2.4655172413793105,
|
3346 |
+
"grad_norm": 0.08620712906122208,
|
3347 |
+
"learning_rate": 1.9177118633625814e-05,
|
3348 |
+
"loss": 0.6022,
|
3349 |
+
"step": 429
|
3350 |
+
},
|
3351 |
+
{
|
3352 |
+
"epoch": 2.471264367816092,
|
3353 |
+
"grad_norm": 0.08710537105798721,
|
3354 |
+
"learning_rate": 1.8784481705498015e-05,
|
3355 |
+
"loss": 0.6161,
|
3356 |
+
"step": 430
|
3357 |
+
},
|
3358 |
+
{
|
3359 |
+
"epoch": 2.471264367816092,
|
3360 |
+
"eval_loss": 0.642048180103302,
|
3361 |
+
"eval_runtime": 405.7821,
|
3362 |
+
"eval_samples_per_second": 24.392,
|
3363 |
+
"eval_steps_per_second": 0.382,
|
3364 |
+
"step": 430
|
3365 |
+
},
|
3366 |
+
{
|
3367 |
+
"epoch": 2.4770114942528734,
|
3368 |
+
"grad_norm": 0.08711250126361847,
|
3369 |
+
"learning_rate": 1.8395488887188005e-05,
|
3370 |
+
"loss": 0.581,
|
3371 |
+
"step": 431
|
3372 |
+
},
|
3373 |
+
{
|
3374 |
+
"epoch": 2.4827586206896552,
|
3375 |
+
"grad_norm": 0.08405685424804688,
|
3376 |
+
"learning_rate": 1.8010157632657543e-05,
|
3377 |
+
"loss": 0.6149,
|
3378 |
+
"step": 432
|
3379 |
+
},
|
3380 |
+
{
|
3381 |
+
"epoch": 2.4885057471264367,
|
3382 |
+
"grad_norm": 0.08080325275659561,
|
3383 |
+
"learning_rate": 1.762850523157532e-05,
|
3384 |
+
"loss": 0.6264,
|
3385 |
+
"step": 433
|
3386 |
+
},
|
3387 |
+
{
|
3388 |
+
"epoch": 2.4942528735632186,
|
3389 |
+
"grad_norm": 0.09836191684007645,
|
3390 |
+
"learning_rate": 1.7250548808541322e-05,
|
3391 |
+
"loss": 0.6055,
|
3392 |
+
"step": 434
|
3393 |
+
},
|
3394 |
+
{
|
3395 |
+
"epoch": 2.5,
|
3396 |
+
"grad_norm": 0.10626177489757538,
|
3397 |
+
"learning_rate": 1.687630532231833e-05,
|
3398 |
+
"loss": 0.5907,
|
3399 |
+
"step": 435
|
3400 |
+
},
|
3401 |
+
{
|
3402 |
+
"epoch": 2.5057471264367814,
|
3403 |
+
"grad_norm": 0.08308445662260056,
|
3404 |
+
"learning_rate": 1.6505791565071138e-05,
|
3405 |
+
"loss": 0.6189,
|
3406 |
+
"step": 436
|
3407 |
+
},
|
3408 |
+
{
|
3409 |
+
"epoch": 2.5114942528735633,
|
3410 |
+
"grad_norm": 0.10249936580657959,
|
3411 |
+
"learning_rate": 1.613902416161288e-05,
|
3412 |
+
"loss": 0.6084,
|
3413 |
+
"step": 437
|
3414 |
+
},
|
3415 |
+
{
|
3416 |
+
"epoch": 2.5172413793103448,
|
3417 |
+
"grad_norm": 0.08516431599855423,
|
3418 |
+
"learning_rate": 1.5776019568659338e-05,
|
3419 |
+
"loss": 0.624,
|
3420 |
+
"step": 438
|
3421 |
+
},
|
3422 |
+
{
|
3423 |
+
"epoch": 2.5229885057471266,
|
3424 |
+
"grad_norm": 0.08852159231901169,
|
3425 |
+
"learning_rate": 1.5416794074090258e-05,
|
3426 |
+
"loss": 0.6374,
|
3427 |
+
"step": 439
|
3428 |
+
},
|
3429 |
+
{
|
3430 |
+
"epoch": 2.528735632183908,
|
3431 |
+
"grad_norm": 0.09616044908761978,
|
3432 |
+
"learning_rate": 1.5061363796218785e-05,
|
3433 |
+
"loss": 0.634,
|
3434 |
+
"step": 440
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 2.528735632183908,
|
3438 |
+
"eval_loss": 0.6419377326965332,
|
3439 |
+
"eval_runtime": 416.5131,
|
3440 |
+
"eval_samples_per_second": 23.764,
|
3441 |
+
"eval_steps_per_second": 0.372,
|
3442 |
+
"step": 440
|
3443 |
+
},
|
3444 |
+
{
|
3445 |
+
"epoch": 2.5344827586206895,
|
3446 |
+
"grad_norm": 0.1012992411851883,
|
3447 |
+
"learning_rate": 1.4709744683068039e-05,
|
3448 |
+
"loss": 0.6443,
|
3449 |
+
"step": 441
|
3450 |
+
},
|
3451 |
+
{
|
3452 |
+
"epoch": 2.5402298850574714,
|
3453 |
+
"grad_norm": 0.102021224796772,
|
3454 |
+
"learning_rate": 1.4361952511655618e-05,
|
3455 |
+
"loss": 0.6111,
|
3456 |
+
"step": 442
|
3457 |
+
},
|
3458 |
+
{
|
3459 |
+
"epoch": 2.545977011494253,
|
3460 |
+
"grad_norm": 0.08464264124631882,
|
3461 |
+
"learning_rate": 1.4018002887285687e-05,
|
3462 |
+
"loss": 0.6007,
|
3463 |
+
"step": 443
|
3464 |
+
},
|
3465 |
+
{
|
3466 |
+
"epoch": 2.5517241379310347,
|
3467 |
+
"grad_norm": 0.0829034224152565,
|
3468 |
+
"learning_rate": 1.3677911242848806e-05,
|
3469 |
+
"loss": 0.6083,
|
3470 |
+
"step": 444
|
3471 |
+
},
|
3472 |
+
{
|
3473 |
+
"epoch": 2.557471264367816,
|
3474 |
+
"grad_norm": 0.08752921968698502,
|
3475 |
+
"learning_rate": 1.334169283812936e-05,
|
3476 |
+
"loss": 0.6227,
|
3477 |
+
"step": 445
|
3478 |
+
},
|
3479 |
+
{
|
3480 |
+
"epoch": 2.5632183908045976,
|
3481 |
+
"grad_norm": 0.080236054956913,
|
3482 |
+
"learning_rate": 1.300936275912098e-05,
|
3483 |
+
"loss": 0.6212,
|
3484 |
+
"step": 446
|
3485 |
+
},
|
3486 |
+
{
|
3487 |
+
"epoch": 2.5689655172413794,
|
3488 |
+
"grad_norm": 0.08524277061223984,
|
3489 |
+
"learning_rate": 1.2680935917349523e-05,
|
3490 |
+
"loss": 0.5915,
|
3491 |
+
"step": 447
|
3492 |
+
},
|
3493 |
+
{
|
3494 |
+
"epoch": 2.574712643678161,
|
3495 |
+
"grad_norm": 0.09109287708997726,
|
3496 |
+
"learning_rate": 1.2356427049204122e-05,
|
3497 |
+
"loss": 0.5972,
|
3498 |
+
"step": 448
|
3499 |
+
},
|
3500 |
+
{
|
3501 |
+
"epoch": 2.5804597701149428,
|
3502 |
+
"grad_norm": 0.11969230324029922,
|
3503 |
+
"learning_rate": 1.2035850715275865e-05,
|
3504 |
+
"loss": 0.6358,
|
3505 |
+
"step": 449
|
3506 |
+
},
|
3507 |
+
{
|
3508 |
+
"epoch": 2.586206896551724,
|
3509 |
+
"grad_norm": 0.08512509614229202,
|
3510 |
+
"learning_rate": 1.1719221299704497e-05,
|
3511 |
+
"loss": 0.6241,
|
3512 |
+
"step": 450
|
3513 |
+
},
|
3514 |
+
{
|
3515 |
+
"epoch": 2.586206896551724,
|
3516 |
+
"eval_loss": 0.641758382320404,
|
3517 |
+
"eval_runtime": 404.7765,
|
3518 |
+
"eval_samples_per_second": 24.453,
|
3519 |
+
"eval_steps_per_second": 0.383,
|
3520 |
+
"step": 450
|
3521 |
+
}
|
3522 |
+
],
|
3523 |
+
"logging_steps": 1.0,
|
3524 |
+
"max_steps": 522,
|
3525 |
+
"num_input_tokens_seen": 0,
|
3526 |
+
"num_train_epochs": 3,
|
3527 |
+
"save_steps": 50,
|
3528 |
+
"stateful_callbacks": {
|
3529 |
+
"TrainerControl": {
|
3530 |
+
"args": {
|
3531 |
+
"should_epoch_stop": false,
|
3532 |
+
"should_evaluate": false,
|
3533 |
+
"should_log": false,
|
3534 |
+
"should_save": true,
|
3535 |
+
"should_training_stop": false
|
3536 |
+
},
|
3537 |
+
"attributes": {}
|
3538 |
+
}
|
3539 |
+
},
|
3540 |
+
"total_flos": 4.392870399484468e+19,
|
3541 |
+
"train_batch_size": 2,
|
3542 |
+
"trial_name": null,
|
3543 |
+
"trial_params": null
|
3544 |
+
}
|
checkpoint-450/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-500/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /project/lt200252-wcbart/pumet/models/Qwen3-32B
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.2
|
checkpoint-522/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /project/lt200252-wcbart/pumet/models/Qwen3-32B
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.2
|
checkpoint-522/adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/project/lt200252-wcbart/pumet/models/Qwen3-32B",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 16,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.0,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 8,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"q_proj",
|
28 |
+
"down_proj",
|
29 |
+
"gate_proj",
|
30 |
+
"o_proj",
|
31 |
+
"k_proj",
|
32 |
+
"up_proj",
|
33 |
+
"v_proj"
|
34 |
+
],
|
35 |
+
"task_type": "CAUSAL_LM",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": false
|
39 |
+
}
|
checkpoint-522/added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
checkpoint-522/chat_template.jinja
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0].role == 'system' %}
|
4 |
+
{{- messages[0].content + '\n\n' }}
|
5 |
+
{%- endif %}
|
6 |
+
{{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
7 |
+
{%- for tool in tools %}
|
8 |
+
{{- "\n" }}
|
9 |
+
{{- tool | tojson }}
|
10 |
+
{%- endfor %}
|
11 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
12 |
+
{%- else %}
|
13 |
+
{%- if messages[0].role == 'system' %}
|
14 |
+
{{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
|
15 |
+
{%- endif %}
|
16 |
+
{%- endif %}
|
17 |
+
{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
|
18 |
+
{%- for message in messages[::-1] %}
|
19 |
+
{%- set index = (messages|length - 1) - loop.index0 %}
|
20 |
+
{%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
|
21 |
+
{%- set ns.multi_step_tool = false %}
|
22 |
+
{%- set ns.last_query_index = index %}
|
23 |
+
{%- endif %}
|
24 |
+
{%- endfor %}
|
25 |
+
{%- for message in messages %}
|
26 |
+
{%- if message.content is string %}
|
27 |
+
{%- set content = message.content %}
|
28 |
+
{%- else %}
|
29 |
+
{%- set content = '' %}
|
30 |
+
{%- endif %}
|
31 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
|
32 |
+
{{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
|
33 |
+
{%- elif message.role == "assistant" %}
|
34 |
+
{%- set reasoning_content = '' %}
|
35 |
+
{%- if message.reasoning_content is string %}
|
36 |
+
{%- set reasoning_content = message.reasoning_content %}
|
37 |
+
{%- else %}
|
38 |
+
{%- if '</think>' in content %}
|
39 |
+
{%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
|
40 |
+
{%- set content = content.split('</think>')[-1].lstrip('\n') %}
|
41 |
+
{%- endif %}
|
42 |
+
{%- endif %}
|
43 |
+
{%- if loop.index0 > ns.last_query_index %}
|
44 |
+
{%- if loop.last or (not loop.last and reasoning_content) %}
|
45 |
+
{{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
|
46 |
+
{%- else %}
|
47 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
48 |
+
{%- endif %}
|
49 |
+
{%- else %}
|
50 |
+
{{- '<|im_start|>' + message.role + '\n' + content }}
|
51 |
+
{%- endif %}
|
52 |
+
{%- if message.tool_calls %}
|
53 |
+
{%- for tool_call in message.tool_calls %}
|
54 |
+
{%- if (loop.first and content) or (not loop.first) %}
|
55 |
+
{{- '\n' }}
|
56 |
+
{%- endif %}
|
57 |
+
{%- if tool_call.function %}
|
58 |
+
{%- set tool_call = tool_call.function %}
|
59 |
+
{%- endif %}
|
60 |
+
{{- '<tool_call>\n{"name": "' }}
|
61 |
+
{{- tool_call.name }}
|
62 |
+
{{- '", "arguments": ' }}
|
63 |
+
{%- if tool_call.arguments is string %}
|
64 |
+
{{- tool_call.arguments }}
|
65 |
+
{%- else %}
|
66 |
+
{{- tool_call.arguments | tojson }}
|
67 |
+
{%- endif %}
|
68 |
+
{{- '}\n</tool_call>' }}
|
69 |
+
{%- endfor %}
|
70 |
+
{%- endif %}
|
71 |
+
{{- '<|im_end|>\n' }}
|
72 |
+
{%- elif message.role == "tool" %}
|
73 |
+
{%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
|
74 |
+
{{- '<|im_start|>user' }}
|
75 |
+
{%- endif %}
|
76 |
+
{{- '\n<tool_response>\n' }}
|
77 |
+
{{- content }}
|
78 |
+
{{- '\n</tool_response>' }}
|
79 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
80 |
+
{{- '<|im_end|>\n' }}
|
81 |
+
{%- endif %}
|
82 |
+
{%- endif %}
|
83 |
+
{%- endfor %}
|
84 |
+
{%- if add_generation_prompt %}
|
85 |
+
{{- '<|im_start|>assistant\n' }}
|
86 |
+
{%- if enable_thinking is defined and enable_thinking is false %}
|
87 |
+
{{- '<think>\n\n</think>\n\n' }}
|
88 |
+
{%- endif %}
|
89 |
+
{%- endif %}
|
checkpoint-522/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-522/special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
checkpoint-522/tokenizer_config.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"extra_special_tokens": {},
|
234 |
+
"model_max_length": 131072,
|
235 |
+
"pad_token": "<|endoftext|>",
|
236 |
+
"padding_side": "right",
|
237 |
+
"split_special_tokens": false,
|
238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
239 |
+
"unk_token": null
|
240 |
+
}
|
checkpoint-522/trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-522/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen3ForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 5120,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 25600,
|
14 |
+
"max_position_embeddings": 40960,
|
15 |
+
"max_window_layers": 64,
|
16 |
+
"model_type": "qwen3",
|
17 |
+
"num_attention_heads": 64,
|
18 |
+
"num_hidden_layers": 64,
|
19 |
+
"num_key_value_heads": 8,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 1000000,
|
23 |
+
"sliding_window": null,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.52.3",
|
27 |
+
"use_cache": true,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 151936
|
30 |
+
}
|
dataset/dataset_dict.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"splits": ["train", "validation"]}
|
eval_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_loss": 0.6412659883499146,
|
4 |
+
"eval_runtime": 413.4377,
|
5 |
+
"eval_samples_per_second": 23.941,
|
6 |
+
"eval_steps_per_second": 0.375
|
7 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"temperature": 0.6,
|
10 |
+
"top_k": 20,
|
11 |
+
"top_p": 0.95,
|
12 |
+
"transformers_version": "4.52.3"
|
13 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00027.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:504d2a880eebf9b143a30dcee5b771d2b0a4ad4982aa67a7849ebe679100b359
|
3 |
+
size 4537714712
|
model-00004-of-00027.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7726306ad162c12b6fe9a615896af1d06c2b5581c9b25fb646ae6b38ad0b8db
|
3 |
+
size 4802607584
|
model-00006-of-00027.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29eeb9e343d96cedec2c28dec7f71703f9f12084c7d046e4bb26de9e0f1d33b8
|
3 |
+
size 4802607616
|
model-00012-of-00027.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04f765b7ef6326108452139580cbe065fc7c1e6ca1040d499bd534283e86657d
|
3 |
+
size 4802607616
|
model-00019-of-00027.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e008b34e332710bedc58b86092567a92c6a62734a08970d679cadf36b49081f9
|
3 |
+
size 4949365464
|
model-00024-of-00027.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9945bae5807983b82092dacff21e6623153cdef5ce9b208b1d7533ed01e8837
|
3 |
+
size 4802607616
|
model-00025-of-00027.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a311443c000b751b73a686c3a7dc57a71fa4ccbc9f9300ad941e3c637e6ecc5
|
3 |
+
size 4949365464
|
model-00026-of-00027.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32c6459a0da2199f179dd2b694a035273ee9dc85753f8b8e3bc461b8653a84a4
|
3 |
+
size 4802607616
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 131048493056
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00027-of-00027.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00027.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00002-of-00027.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00002-of-00027.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00027.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00027.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00002-of-00027.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_norm.weight": "model-00001-of-00027.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00027.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00027.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_norm.weight": "model-00001-of-00027.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00027.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00027.safetensors",
|
19 |
+
"model.layers.1.input_layernorm.weight": "model-00002-of-00027.safetensors",
|
20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00002-of-00027.safetensors",
|
21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00002-of-00027.safetensors",
|
22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00002-of-00027.safetensors",
|
23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00002-of-00027.safetensors",
|
24 |
+
"model.layers.1.self_attn.k_norm.weight": "model-00002-of-00027.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00002-of-00027.safetensors",
|
26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00002-of-00027.safetensors",
|
27 |
+
"model.layers.1.self_attn.q_norm.weight": "model-00002-of-00027.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00002-of-00027.safetensors",
|
29 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00002-of-00027.safetensors",
|
30 |
+
"model.layers.10.input_layernorm.weight": "model-00006-of-00027.safetensors",
|
31 |
+
"model.layers.10.mlp.down_proj.weight": "model-00006-of-00027.safetensors",
|
32 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00005-of-00027.safetensors",
|
33 |
+
"model.layers.10.mlp.up_proj.weight": "model-00005-of-00027.safetensors",
|
34 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00006-of-00027.safetensors",
|
35 |
+
"model.layers.10.self_attn.k_norm.weight": "model-00005-of-00027.safetensors",
|
36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00005-of-00027.safetensors",
|
37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00005-of-00027.safetensors",
|
38 |
+
"model.layers.10.self_attn.q_norm.weight": "model-00005-of-00027.safetensors",
|
39 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00005-of-00027.safetensors",
|
40 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00005-of-00027.safetensors",
|
41 |
+
"model.layers.11.input_layernorm.weight": "model-00006-of-00027.safetensors",
|
42 |
+
"model.layers.11.mlp.down_proj.weight": "model-00006-of-00027.safetensors",
|
43 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00006-of-00027.safetensors",
|
44 |
+
"model.layers.11.mlp.up_proj.weight": "model-00006-of-00027.safetensors",
|
45 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00006-of-00027.safetensors",
|
46 |
+
"model.layers.11.self_attn.k_norm.weight": "model-00006-of-00027.safetensors",
|
47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00006-of-00027.safetensors",
|
48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00006-of-00027.safetensors",
|
49 |
+
"model.layers.11.self_attn.q_norm.weight": "model-00006-of-00027.safetensors",
|
50 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00006-of-00027.safetensors",
|
51 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00006-of-00027.safetensors",
|
52 |
+
"model.layers.12.input_layernorm.weight": "model-00006-of-00027.safetensors",
|
53 |
+
"model.layers.12.mlp.down_proj.weight": "model-00006-of-00027.safetensors",
|
54 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00006-of-00027.safetensors",
|
55 |
+
"model.layers.12.mlp.up_proj.weight": "model-00006-of-00027.safetensors",
|
56 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00006-of-00027.safetensors",
|
57 |
+
"model.layers.12.self_attn.k_norm.weight": "model-00006-of-00027.safetensors",
|
58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00006-of-00027.safetensors",
|
59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00006-of-00027.safetensors",
|
60 |
+
"model.layers.12.self_attn.q_norm.weight": "model-00006-of-00027.safetensors",
|
61 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00006-of-00027.safetensors",
|
62 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00006-of-00027.safetensors",
|
63 |
+
"model.layers.13.input_layernorm.weight": "model-00007-of-00027.safetensors",
|
64 |
+
"model.layers.13.mlp.down_proj.weight": "model-00007-of-00027.safetensors",
|
65 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00007-of-00027.safetensors",
|
66 |
+
"model.layers.13.mlp.up_proj.weight": "model-00007-of-00027.safetensors",
|
67 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00007-of-00027.safetensors",
|
68 |
+
"model.layers.13.self_attn.k_norm.weight": "model-00006-of-00027.safetensors",
|
69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00006-of-00027.safetensors",
|
70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00006-of-00027.safetensors",
|
71 |
+
"model.layers.13.self_attn.q_norm.weight": "model-00006-of-00027.safetensors",
|
72 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00006-of-00027.safetensors",
|
73 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00006-of-00027.safetensors",
|
74 |
+
"model.layers.14.input_layernorm.weight": "model-00007-of-00027.safetensors",
|
75 |
+
"model.layers.14.mlp.down_proj.weight": "model-00007-of-00027.safetensors",
|
76 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00007-of-00027.safetensors",
|
77 |
+
"model.layers.14.mlp.up_proj.weight": "model-00007-of-00027.safetensors",
|
78 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00007-of-00027.safetensors",
|
79 |
+
"model.layers.14.self_attn.k_norm.weight": "model-00007-of-00027.safetensors",
|
80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00007-of-00027.safetensors",
|
81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00007-of-00027.safetensors",
|
82 |
+
"model.layers.14.self_attn.q_norm.weight": "model-00007-of-00027.safetensors",
|
83 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00007-of-00027.safetensors",
|
84 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00007-of-00027.safetensors",
|
85 |
+
"model.layers.15.input_layernorm.weight": "model-00008-of-00027.safetensors",
|
86 |
+
"model.layers.15.mlp.down_proj.weight": "model-00008-of-00027.safetensors",
|
87 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00007-of-00027.safetensors",
|
88 |
+
"model.layers.15.mlp.up_proj.weight": "model-00007-of-00027.safetensors",
|
89 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00008-of-00027.safetensors",
|
90 |
+
"model.layers.15.self_attn.k_norm.weight": "model-00007-of-00027.safetensors",
|
91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00007-of-00027.safetensors",
|
92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00007-of-00027.safetensors",
|
93 |
+
"model.layers.15.self_attn.q_norm.weight": "model-00007-of-00027.safetensors",
|
94 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00007-of-00027.safetensors",
|
95 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00007-of-00027.safetensors",
|
96 |
+
"model.layers.16.input_layernorm.weight": "model-00008-of-00027.safetensors",
|
97 |
+
"model.layers.16.mlp.down_proj.weight": "model-00008-of-00027.safetensors",
|
98 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00008-of-00027.safetensors",
|
99 |
+
"model.layers.16.mlp.up_proj.weight": "model-00008-of-00027.safetensors",
|
100 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00008-of-00027.safetensors",
|
101 |
+
"model.layers.16.self_attn.k_norm.weight": "model-00008-of-00027.safetensors",
|
102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00008-of-00027.safetensors",
|
103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00008-of-00027.safetensors",
|
104 |
+
"model.layers.16.self_attn.q_norm.weight": "model-00008-of-00027.safetensors",
|
105 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00008-of-00027.safetensors",
|
106 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00008-of-00027.safetensors",
|
107 |
+
"model.layers.17.input_layernorm.weight": "model-00008-of-00027.safetensors",
|
108 |
+
"model.layers.17.mlp.down_proj.weight": "model-00008-of-00027.safetensors",
|
109 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00008-of-00027.safetensors",
|
110 |
+
"model.layers.17.mlp.up_proj.weight": "model-00008-of-00027.safetensors",
|
111 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00008-of-00027.safetensors",
|
112 |
+
"model.layers.17.self_attn.k_norm.weight": "model-00008-of-00027.safetensors",
|
113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00008-of-00027.safetensors",
|
114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00008-of-00027.safetensors",
|
115 |
+
"model.layers.17.self_attn.q_norm.weight": "model-00008-of-00027.safetensors",
|
116 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00008-of-00027.safetensors",
|
117 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00008-of-00027.safetensors",
|
118 |
+
"model.layers.18.input_layernorm.weight": "model-00009-of-00027.safetensors",
|
119 |
+
"model.layers.18.mlp.down_proj.weight": "model-00009-of-00027.safetensors",
|
120 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00009-of-00027.safetensors",
|
121 |
+
"model.layers.18.mlp.up_proj.weight": "model-00009-of-00027.safetensors",
|
122 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00009-of-00027.safetensors",
|
123 |
+
"model.layers.18.self_attn.k_norm.weight": "model-00008-of-00027.safetensors",
|
124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00008-of-00027.safetensors",
|
125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00008-of-00027.safetensors",
|
126 |
+
"model.layers.18.self_attn.q_norm.weight": "model-00008-of-00027.safetensors",
|
127 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00008-of-00027.safetensors",
|
128 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00008-of-00027.safetensors",
|
129 |
+
"model.layers.19.input_layernorm.weight": "model-00009-of-00027.safetensors",
|
130 |
+
"model.layers.19.mlp.down_proj.weight": "model-00009-of-00027.safetensors",
|
131 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00009-of-00027.safetensors",
|
132 |
+
"model.layers.19.mlp.up_proj.weight": "model-00009-of-00027.safetensors",
|
133 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00009-of-00027.safetensors",
|
134 |
+
"model.layers.19.self_attn.k_norm.weight": "model-00009-of-00027.safetensors",
|
135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00009-of-00027.safetensors",
|
136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00009-of-00027.safetensors",
|
137 |
+
"model.layers.19.self_attn.q_norm.weight": "model-00009-of-00027.safetensors",
|
138 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00009-of-00027.safetensors",
|
139 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00009-of-00027.safetensors",
|
140 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00027.safetensors",
|
141 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00027.safetensors",
|
142 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00002-of-00027.safetensors",
|
143 |
+
"model.layers.2.mlp.up_proj.weight": "model-00002-of-00027.safetensors",
|
144 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00027.safetensors",
|
145 |
+
"model.layers.2.self_attn.k_norm.weight": "model-00002-of-00027.safetensors",
|
146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00002-of-00027.safetensors",
|
147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00027.safetensors",
|
148 |
+
"model.layers.2.self_attn.q_norm.weight": "model-00002-of-00027.safetensors",
|
149 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00002-of-00027.safetensors",
|
150 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00002-of-00027.safetensors",
|
151 |
+
"model.layers.20.input_layernorm.weight": "model-00010-of-00027.safetensors",
|
152 |
+
"model.layers.20.mlp.down_proj.weight": "model-00010-of-00027.safetensors",
|
153 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00009-of-00027.safetensors",
|
154 |
+
"model.layers.20.mlp.up_proj.weight": "model-00009-of-00027.safetensors",
|
155 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00010-of-00027.safetensors",
|
156 |
+
"model.layers.20.self_attn.k_norm.weight": "model-00009-of-00027.safetensors",
|
157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00009-of-00027.safetensors",
|
158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00009-of-00027.safetensors",
|
159 |
+
"model.layers.20.self_attn.q_norm.weight": "model-00009-of-00027.safetensors",
|
160 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00009-of-00027.safetensors",
|
161 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00009-of-00027.safetensors",
|
162 |
+
"model.layers.21.input_layernorm.weight": "model-00010-of-00027.safetensors",
|
163 |
+
"model.layers.21.mlp.down_proj.weight": "model-00010-of-00027.safetensors",
|
164 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00010-of-00027.safetensors",
|
165 |
+
"model.layers.21.mlp.up_proj.weight": "model-00010-of-00027.safetensors",
|
166 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00010-of-00027.safetensors",
|
167 |
+
"model.layers.21.self_attn.k_norm.weight": "model-00010-of-00027.safetensors",
|
168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00010-of-00027.safetensors",
|
169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00010-of-00027.safetensors",
|
170 |
+
"model.layers.21.self_attn.q_norm.weight": "model-00010-of-00027.safetensors",
|
171 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00010-of-00027.safetensors",
|
172 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00010-of-00027.safetensors",
|
173 |
+
"model.layers.22.input_layernorm.weight": "model-00010-of-00027.safetensors",
|
174 |
+
"model.layers.22.mlp.down_proj.weight": "model-00010-of-00027.safetensors",
|
175 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00010-of-00027.safetensors",
|
176 |
+
"model.layers.22.mlp.up_proj.weight": "model-00010-of-00027.safetensors",
|
177 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00010-of-00027.safetensors",
|
178 |
+
"model.layers.22.self_attn.k_norm.weight": "model-00010-of-00027.safetensors",
|
179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00010-of-00027.safetensors",
|
180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00010-of-00027.safetensors",
|
181 |
+
"model.layers.22.self_attn.q_norm.weight": "model-00010-of-00027.safetensors",
|
182 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00010-of-00027.safetensors",
|
183 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00010-of-00027.safetensors",
|
184 |
+
"model.layers.23.input_layernorm.weight": "model-00011-of-00027.safetensors",
|
185 |
+
"model.layers.23.mlp.down_proj.weight": "model-00011-of-00027.safetensors",
|
186 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00011-of-00027.safetensors",
|
187 |
+
"model.layers.23.mlp.up_proj.weight": "model-00011-of-00027.safetensors",
|
188 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00011-of-00027.safetensors",
|
189 |
+
"model.layers.23.self_attn.k_norm.weight": "model-00010-of-00027.safetensors",
|
190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00010-of-00027.safetensors",
|
191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00010-of-00027.safetensors",
|
192 |
+
"model.layers.23.self_attn.q_norm.weight": "model-00010-of-00027.safetensors",
|
193 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00010-of-00027.safetensors",
|
194 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00010-of-00027.safetensors",
|
195 |
+
"model.layers.24.input_layernorm.weight": "model-00011-of-00027.safetensors",
|
196 |
+
"model.layers.24.mlp.down_proj.weight": "model-00011-of-00027.safetensors",
|
197 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00011-of-00027.safetensors",
|
198 |
+
"model.layers.24.mlp.up_proj.weight": "model-00011-of-00027.safetensors",
|
199 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00011-of-00027.safetensors",
|
200 |
+
"model.layers.24.self_attn.k_norm.weight": "model-00011-of-00027.safetensors",
|
201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00011-of-00027.safetensors",
|
202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00011-of-00027.safetensors",
|
203 |
+
"model.layers.24.self_attn.q_norm.weight": "model-00011-of-00027.safetensors",
|
204 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00011-of-00027.safetensors",
|
205 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00011-of-00027.safetensors",
|
206 |
+
"model.layers.25.input_layernorm.weight": "model-00012-of-00027.safetensors",
|
207 |
+
"model.layers.25.mlp.down_proj.weight": "model-00012-of-00027.safetensors",
|
208 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00011-of-00027.safetensors",
|
209 |
+
"model.layers.25.mlp.up_proj.weight": "model-00011-of-00027.safetensors",
|
210 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00012-of-00027.safetensors",
|
211 |
+
"model.layers.25.self_attn.k_norm.weight": "model-00011-of-00027.safetensors",
|
212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00011-of-00027.safetensors",
|
213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00011-of-00027.safetensors",
|
214 |
+
"model.layers.25.self_attn.q_norm.weight": "model-00011-of-00027.safetensors",
|
215 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00011-of-00027.safetensors",
|
216 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00011-of-00027.safetensors",
|
217 |
+
"model.layers.26.input_layernorm.weight": "model-00012-of-00027.safetensors",
|
218 |
+
"model.layers.26.mlp.down_proj.weight": "model-00012-of-00027.safetensors",
|
219 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00012-of-00027.safetensors",
|
220 |
+
"model.layers.26.mlp.up_proj.weight": "model-00012-of-00027.safetensors",
|
221 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00012-of-00027.safetensors",
|
222 |
+
"model.layers.26.self_attn.k_norm.weight": "model-00012-of-00027.safetensors",
|
223 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00012-of-00027.safetensors",
|
224 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00012-of-00027.safetensors",
|
225 |
+
"model.layers.26.self_attn.q_norm.weight": "model-00012-of-00027.safetensors",
|
226 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00012-of-00027.safetensors",
|
227 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00012-of-00027.safetensors",
|
228 |
+
"model.layers.27.input_layernorm.weight": "model-00012-of-00027.safetensors",
|
229 |
+
"model.layers.27.mlp.down_proj.weight": "model-00012-of-00027.safetensors",
|
230 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00012-of-00027.safetensors",
|
231 |
+
"model.layers.27.mlp.up_proj.weight": "model-00012-of-00027.safetensors",
|
232 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00012-of-00027.safetensors",
|
233 |
+
"model.layers.27.self_attn.k_norm.weight": "model-00012-of-00027.safetensors",
|
234 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00012-of-00027.safetensors",
|
235 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00012-of-00027.safetensors",
|
236 |
+
"model.layers.27.self_attn.q_norm.weight": "model-00012-of-00027.safetensors",
|
237 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00012-of-00027.safetensors",
|
238 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00012-of-00027.safetensors",
|
239 |
+
"model.layers.28.input_layernorm.weight": "model-00013-of-00027.safetensors",
|
240 |
+
"model.layers.28.mlp.down_proj.weight": "model-00013-of-00027.safetensors",
|
241 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00013-of-00027.safetensors",
|
242 |
+
"model.layers.28.mlp.up_proj.weight": "model-00013-of-00027.safetensors",
|
243 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00013-of-00027.safetensors",
|
244 |
+
"model.layers.28.self_attn.k_norm.weight": "model-00012-of-00027.safetensors",
|
245 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00012-of-00027.safetensors",
|
246 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00012-of-00027.safetensors",
|
247 |
+
"model.layers.28.self_attn.q_norm.weight": "model-00012-of-00027.safetensors",
|
248 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00012-of-00027.safetensors",
|
249 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00012-of-00027.safetensors",
|
250 |
+
"model.layers.29.input_layernorm.weight": "model-00013-of-00027.safetensors",
|
251 |
+
"model.layers.29.mlp.down_proj.weight": "model-00013-of-00027.safetensors",
|
252 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00013-of-00027.safetensors",
|
253 |
+
"model.layers.29.mlp.up_proj.weight": "model-00013-of-00027.safetensors",
|
254 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00013-of-00027.safetensors",
|
255 |
+
"model.layers.29.self_attn.k_norm.weight": "model-00013-of-00027.safetensors",
|
256 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00013-of-00027.safetensors",
|
257 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00013-of-00027.safetensors",
|
258 |
+
"model.layers.29.self_attn.q_norm.weight": "model-00013-of-00027.safetensors",
|
259 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00013-of-00027.safetensors",
|
260 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00013-of-00027.safetensors",
|
261 |
+
"model.layers.3.input_layernorm.weight": "model-00003-of-00027.safetensors",
|
262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00003-of-00027.safetensors",
|
263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00003-of-00027.safetensors",
|
264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00003-of-00027.safetensors",
|
265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00003-of-00027.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_norm.weight": "model-00002-of-00027.safetensors",
|
267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00027.safetensors",
|
268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00027.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_norm.weight": "model-00002-of-00027.safetensors",
|
270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00027.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00027.safetensors",
|
272 |
+
"model.layers.30.input_layernorm.weight": "model-00014-of-00027.safetensors",
|
273 |
+
"model.layers.30.mlp.down_proj.weight": "model-00014-of-00027.safetensors",
|
274 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00013-of-00027.safetensors",
|
275 |
+
"model.layers.30.mlp.up_proj.weight": "model-00013-of-00027.safetensors",
|
276 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00014-of-00027.safetensors",
|
277 |
+
"model.layers.30.self_attn.k_norm.weight": "model-00013-of-00027.safetensors",
|
278 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00013-of-00027.safetensors",
|
279 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00013-of-00027.safetensors",
|
280 |
+
"model.layers.30.self_attn.q_norm.weight": "model-00013-of-00027.safetensors",
|
281 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00013-of-00027.safetensors",
|
282 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00013-of-00027.safetensors",
|
283 |
+
"model.layers.31.input_layernorm.weight": "model-00014-of-00027.safetensors",
|
284 |
+
"model.layers.31.mlp.down_proj.weight": "model-00014-of-00027.safetensors",
|
285 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00014-of-00027.safetensors",
|
286 |
+
"model.layers.31.mlp.up_proj.weight": "model-00014-of-00027.safetensors",
|
287 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00014-of-00027.safetensors",
|
288 |
+
"model.layers.31.self_attn.k_norm.weight": "model-00014-of-00027.safetensors",
|
289 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00014-of-00027.safetensors",
|
290 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00014-of-00027.safetensors",
|
291 |
+
"model.layers.31.self_attn.q_norm.weight": "model-00014-of-00027.safetensors",
|
292 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00014-of-00027.safetensors",
|
293 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00014-of-00027.safetensors",
|
294 |
+
"model.layers.32.input_layernorm.weight": "model-00014-of-00027.safetensors",
|
295 |
+
"model.layers.32.mlp.down_proj.weight": "model-00014-of-00027.safetensors",
|
296 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00014-of-00027.safetensors",
|
297 |
+
"model.layers.32.mlp.up_proj.weight": "model-00014-of-00027.safetensors",
|
298 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00014-of-00027.safetensors",
|
299 |
+
"model.layers.32.self_attn.k_norm.weight": "model-00014-of-00027.safetensors",
|
300 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00014-of-00027.safetensors",
|
301 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00014-of-00027.safetensors",
|
302 |
+
"model.layers.32.self_attn.q_norm.weight": "model-00014-of-00027.safetensors",
|
303 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00014-of-00027.safetensors",
|
304 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00014-of-00027.safetensors",
|
305 |
+
"model.layers.33.input_layernorm.weight": "model-00015-of-00027.safetensors",
|
306 |
+
"model.layers.33.mlp.down_proj.weight": "model-00015-of-00027.safetensors",
|
307 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00015-of-00027.safetensors",
|
308 |
+
"model.layers.33.mlp.up_proj.weight": "model-00015-of-00027.safetensors",
|
309 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00015-of-00027.safetensors",
|
310 |
+
"model.layers.33.self_attn.k_norm.weight": "model-00014-of-00027.safetensors",
|
311 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00014-of-00027.safetensors",
|
312 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00014-of-00027.safetensors",
|
313 |
+
"model.layers.33.self_attn.q_norm.weight": "model-00014-of-00027.safetensors",
|
314 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00014-of-00027.safetensors",
|
315 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00014-of-00027.safetensors",
|
316 |
+
"model.layers.34.input_layernorm.weight": "model-00015-of-00027.safetensors",
|
317 |
+
"model.layers.34.mlp.down_proj.weight": "model-00015-of-00027.safetensors",
|
318 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00015-of-00027.safetensors",
|
319 |
+
"model.layers.34.mlp.up_proj.weight": "model-00015-of-00027.safetensors",
|
320 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00015-of-00027.safetensors",
|
321 |
+
"model.layers.34.self_attn.k_norm.weight": "model-00015-of-00027.safetensors",
|
322 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00015-of-00027.safetensors",
|
323 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00015-of-00027.safetensors",
|
324 |
+
"model.layers.34.self_attn.q_norm.weight": "model-00015-of-00027.safetensors",
|
325 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00015-of-00027.safetensors",
|
326 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00015-of-00027.safetensors",
|
327 |
+
"model.layers.35.input_layernorm.weight": "model-00016-of-00027.safetensors",
|
328 |
+
"model.layers.35.mlp.down_proj.weight": "model-00016-of-00027.safetensors",
|
329 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00015-of-00027.safetensors",
|
330 |
+
"model.layers.35.mlp.up_proj.weight": "model-00015-of-00027.safetensors",
|
331 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00016-of-00027.safetensors",
|
332 |
+
"model.layers.35.self_attn.k_norm.weight": "model-00015-of-00027.safetensors",
|
333 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00015-of-00027.safetensors",
|
334 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00015-of-00027.safetensors",
|
335 |
+
"model.layers.35.self_attn.q_norm.weight": "model-00015-of-00027.safetensors",
|
336 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00015-of-00027.safetensors",
|
337 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00015-of-00027.safetensors",
|
338 |
+
"model.layers.36.input_layernorm.weight": "model-00016-of-00027.safetensors",
|
339 |
+
"model.layers.36.mlp.down_proj.weight": "model-00016-of-00027.safetensors",
|
340 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00016-of-00027.safetensors",
|
341 |
+
"model.layers.36.mlp.up_proj.weight": "model-00016-of-00027.safetensors",
|
342 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00016-of-00027.safetensors",
|
343 |
+
"model.layers.36.self_attn.k_norm.weight": "model-00016-of-00027.safetensors",
|
344 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00016-of-00027.safetensors",
|
345 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00016-of-00027.safetensors",
|
346 |
+
"model.layers.36.self_attn.q_norm.weight": "model-00016-of-00027.safetensors",
|
347 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00016-of-00027.safetensors",
|
348 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00016-of-00027.safetensors",
|
349 |
+
"model.layers.37.input_layernorm.weight": "model-00016-of-00027.safetensors",
|
350 |
+
"model.layers.37.mlp.down_proj.weight": "model-00016-of-00027.safetensors",
|
351 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00016-of-00027.safetensors",
|
352 |
+
"model.layers.37.mlp.up_proj.weight": "model-00016-of-00027.safetensors",
|
353 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00016-of-00027.safetensors",
|
354 |
+
"model.layers.37.self_attn.k_norm.weight": "model-00016-of-00027.safetensors",
|
355 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00016-of-00027.safetensors",
|
356 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00016-of-00027.safetensors",
|
357 |
+
"model.layers.37.self_attn.q_norm.weight": "model-00016-of-00027.safetensors",
|
358 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00016-of-00027.safetensors",
|
359 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00016-of-00027.safetensors",
|
360 |
+
"model.layers.38.input_layernorm.weight": "model-00017-of-00027.safetensors",
|
361 |
+
"model.layers.38.mlp.down_proj.weight": "model-00017-of-00027.safetensors",
|
362 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00017-of-00027.safetensors",
|
363 |
+
"model.layers.38.mlp.up_proj.weight": "model-00017-of-00027.safetensors",
|
364 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00017-of-00027.safetensors",
|
365 |
+
"model.layers.38.self_attn.k_norm.weight": "model-00016-of-00027.safetensors",
|
366 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00016-of-00027.safetensors",
|
367 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00016-of-00027.safetensors",
|
368 |
+
"model.layers.38.self_attn.q_norm.weight": "model-00016-of-00027.safetensors",
|
369 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00016-of-00027.safetensors",
|
370 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00016-of-00027.safetensors",
|
371 |
+
"model.layers.39.input_layernorm.weight": "model-00017-of-00027.safetensors",
|
372 |
+
"model.layers.39.mlp.down_proj.weight": "model-00017-of-00027.safetensors",
|
373 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00017-of-00027.safetensors",
|
374 |
+
"model.layers.39.mlp.up_proj.weight": "model-00017-of-00027.safetensors",
|
375 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00017-of-00027.safetensors",
|
376 |
+
"model.layers.39.self_attn.k_norm.weight": "model-00017-of-00027.safetensors",
|
377 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00017-of-00027.safetensors",
|
378 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00017-of-00027.safetensors",
|
379 |
+
"model.layers.39.self_attn.q_norm.weight": "model-00017-of-00027.safetensors",
|
380 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00017-of-00027.safetensors",
|
381 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00017-of-00027.safetensors",
|
382 |
+
"model.layers.4.input_layernorm.weight": "model-00003-of-00027.safetensors",
|
383 |
+
"model.layers.4.mlp.down_proj.weight": "model-00003-of-00027.safetensors",
|
384 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00003-of-00027.safetensors",
|
385 |
+
"model.layers.4.mlp.up_proj.weight": "model-00003-of-00027.safetensors",
|
386 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00003-of-00027.safetensors",
|
387 |
+
"model.layers.4.self_attn.k_norm.weight": "model-00003-of-00027.safetensors",
|
388 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00003-of-00027.safetensors",
|
389 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00003-of-00027.safetensors",
|
390 |
+
"model.layers.4.self_attn.q_norm.weight": "model-00003-of-00027.safetensors",
|
391 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00003-of-00027.safetensors",
|
392 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00003-of-00027.safetensors",
|
393 |
+
"model.layers.40.input_layernorm.weight": "model-00018-of-00027.safetensors",
|
394 |
+
"model.layers.40.mlp.down_proj.weight": "model-00018-of-00027.safetensors",
|
395 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00017-of-00027.safetensors",
|
396 |
+
"model.layers.40.mlp.up_proj.weight": "model-00017-of-00027.safetensors",
|
397 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00018-of-00027.safetensors",
|
398 |
+
"model.layers.40.self_attn.k_norm.weight": "model-00017-of-00027.safetensors",
|
399 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00017-of-00027.safetensors",
|
400 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00017-of-00027.safetensors",
|
401 |
+
"model.layers.40.self_attn.q_norm.weight": "model-00017-of-00027.safetensors",
|
402 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00017-of-00027.safetensors",
|
403 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00017-of-00027.safetensors",
|
404 |
+
"model.layers.41.input_layernorm.weight": "model-00018-of-00027.safetensors",
|
405 |
+
"model.layers.41.mlp.down_proj.weight": "model-00018-of-00027.safetensors",
|
406 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00018-of-00027.safetensors",
|
407 |
+
"model.layers.41.mlp.up_proj.weight": "model-00018-of-00027.safetensors",
|
408 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00018-of-00027.safetensors",
|
409 |
+
"model.layers.41.self_attn.k_norm.weight": "model-00018-of-00027.safetensors",
|
410 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00018-of-00027.safetensors",
|
411 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00018-of-00027.safetensors",
|
412 |
+
"model.layers.41.self_attn.q_norm.weight": "model-00018-of-00027.safetensors",
|
413 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00018-of-00027.safetensors",
|
414 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00018-of-00027.safetensors",
|
415 |
+
"model.layers.42.input_layernorm.weight": "model-00018-of-00027.safetensors",
|
416 |
+
"model.layers.42.mlp.down_proj.weight": "model-00018-of-00027.safetensors",
|
417 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00018-of-00027.safetensors",
|
418 |
+
"model.layers.42.mlp.up_proj.weight": "model-00018-of-00027.safetensors",
|
419 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00018-of-00027.safetensors",
|
420 |
+
"model.layers.42.self_attn.k_norm.weight": "model-00018-of-00027.safetensors",
|
421 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00018-of-00027.safetensors",
|
422 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00018-of-00027.safetensors",
|
423 |
+
"model.layers.42.self_attn.q_norm.weight": "model-00018-of-00027.safetensors",
|
424 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00018-of-00027.safetensors",
|
425 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00018-of-00027.safetensors",
|
426 |
+
"model.layers.43.input_layernorm.weight": "model-00019-of-00027.safetensors",
|
427 |
+
"model.layers.43.mlp.down_proj.weight": "model-00019-of-00027.safetensors",
|
428 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00019-of-00027.safetensors",
|
429 |
+
"model.layers.43.mlp.up_proj.weight": "model-00019-of-00027.safetensors",
|
430 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00019-of-00027.safetensors",
|
431 |
+
"model.layers.43.self_attn.k_norm.weight": "model-00018-of-00027.safetensors",
|
432 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00018-of-00027.safetensors",
|
433 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00018-of-00027.safetensors",
|
434 |
+
"model.layers.43.self_attn.q_norm.weight": "model-00018-of-00027.safetensors",
|
435 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00018-of-00027.safetensors",
|
436 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00018-of-00027.safetensors",
|
437 |
+
"model.layers.44.input_layernorm.weight": "model-00019-of-00027.safetensors",
|
438 |
+
"model.layers.44.mlp.down_proj.weight": "model-00019-of-00027.safetensors",
|
439 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00019-of-00027.safetensors",
|
440 |
+
"model.layers.44.mlp.up_proj.weight": "model-00019-of-00027.safetensors",
|
441 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00019-of-00027.safetensors",
|
442 |
+
"model.layers.44.self_attn.k_norm.weight": "model-00019-of-00027.safetensors",
|
443 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00019-of-00027.safetensors",
|
444 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00019-of-00027.safetensors",
|
445 |
+
"model.layers.44.self_attn.q_norm.weight": "model-00019-of-00027.safetensors",
|
446 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00019-of-00027.safetensors",
|
447 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00019-of-00027.safetensors",
|
448 |
+
"model.layers.45.input_layernorm.weight": "model-00020-of-00027.safetensors",
|
449 |
+
"model.layers.45.mlp.down_proj.weight": "model-00020-of-00027.safetensors",
|
450 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00019-of-00027.safetensors",
|
451 |
+
"model.layers.45.mlp.up_proj.weight": "model-00019-of-00027.safetensors",
|
452 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00020-of-00027.safetensors",
|
453 |
+
"model.layers.45.self_attn.k_norm.weight": "model-00019-of-00027.safetensors",
|
454 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00019-of-00027.safetensors",
|
455 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00019-of-00027.safetensors",
|
456 |
+
"model.layers.45.self_attn.q_norm.weight": "model-00019-of-00027.safetensors",
|
457 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00019-of-00027.safetensors",
|
458 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00019-of-00027.safetensors",
|
459 |
+
"model.layers.46.input_layernorm.weight": "model-00020-of-00027.safetensors",
|
460 |
+
"model.layers.46.mlp.down_proj.weight": "model-00020-of-00027.safetensors",
|
461 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00020-of-00027.safetensors",
|
462 |
+
"model.layers.46.mlp.up_proj.weight": "model-00020-of-00027.safetensors",
|
463 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00020-of-00027.safetensors",
|
464 |
+
"model.layers.46.self_attn.k_norm.weight": "model-00020-of-00027.safetensors",
|
465 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00020-of-00027.safetensors",
|
466 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00020-of-00027.safetensors",
|
467 |
+
"model.layers.46.self_attn.q_norm.weight": "model-00020-of-00027.safetensors",
|
468 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00020-of-00027.safetensors",
|
469 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00020-of-00027.safetensors",
|
470 |
+
"model.layers.47.input_layernorm.weight": "model-00020-of-00027.safetensors",
|
471 |
+
"model.layers.47.mlp.down_proj.weight": "model-00020-of-00027.safetensors",
|
472 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00020-of-00027.safetensors",
|
473 |
+
"model.layers.47.mlp.up_proj.weight": "model-00020-of-00027.safetensors",
|
474 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00020-of-00027.safetensors",
|
475 |
+
"model.layers.47.self_attn.k_norm.weight": "model-00020-of-00027.safetensors",
|
476 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00020-of-00027.safetensors",
|
477 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00020-of-00027.safetensors",
|
478 |
+
"model.layers.47.self_attn.q_norm.weight": "model-00020-of-00027.safetensors",
|
479 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00020-of-00027.safetensors",
|
480 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00020-of-00027.safetensors",
|
481 |
+
"model.layers.48.input_layernorm.weight": "model-00021-of-00027.safetensors",
|
482 |
+
"model.layers.48.mlp.down_proj.weight": "model-00021-of-00027.safetensors",
|
483 |
+
"model.layers.48.mlp.gate_proj.weight": "model-00021-of-00027.safetensors",
|
484 |
+
"model.layers.48.mlp.up_proj.weight": "model-00021-of-00027.safetensors",
|
485 |
+
"model.layers.48.post_attention_layernorm.weight": "model-00021-of-00027.safetensors",
|
486 |
+
"model.layers.48.self_attn.k_norm.weight": "model-00020-of-00027.safetensors",
|
487 |
+
"model.layers.48.self_attn.k_proj.weight": "model-00020-of-00027.safetensors",
|
488 |
+
"model.layers.48.self_attn.o_proj.weight": "model-00020-of-00027.safetensors",
|
489 |
+
"model.layers.48.self_attn.q_norm.weight": "model-00020-of-00027.safetensors",
|
490 |
+
"model.layers.48.self_attn.q_proj.weight": "model-00020-of-00027.safetensors",
|
491 |
+
"model.layers.48.self_attn.v_proj.weight": "model-00020-of-00027.safetensors",
|
492 |
+
"model.layers.49.input_layernorm.weight": "model-00021-of-00027.safetensors",
|
493 |
+
"model.layers.49.mlp.down_proj.weight": "model-00021-of-00027.safetensors",
|
494 |
+
"model.layers.49.mlp.gate_proj.weight": "model-00021-of-00027.safetensors",
|
495 |
+
"model.layers.49.mlp.up_proj.weight": "model-00021-of-00027.safetensors",
|
496 |
+
"model.layers.49.post_attention_layernorm.weight": "model-00021-of-00027.safetensors",
|
497 |
+
"model.layers.49.self_attn.k_norm.weight": "model-00021-of-00027.safetensors",
|
498 |
+
"model.layers.49.self_attn.k_proj.weight": "model-00021-of-00027.safetensors",
|
499 |
+
"model.layers.49.self_attn.o_proj.weight": "model-00021-of-00027.safetensors",
|
500 |
+
"model.layers.49.self_attn.q_norm.weight": "model-00021-of-00027.safetensors",
|
501 |
+
"model.layers.49.self_attn.q_proj.weight": "model-00021-of-00027.safetensors",
|
502 |
+
"model.layers.49.self_attn.v_proj.weight": "model-00021-of-00027.safetensors",
|
503 |
+
"model.layers.5.input_layernorm.weight": "model-00004-of-00027.safetensors",
|
504 |
+
"model.layers.5.mlp.down_proj.weight": "model-00004-of-00027.safetensors",
|
505 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00003-of-00027.safetensors",
|
506 |
+
"model.layers.5.mlp.up_proj.weight": "model-00003-of-00027.safetensors",
|
507 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00004-of-00027.safetensors",
|
508 |
+
"model.layers.5.self_attn.k_norm.weight": "model-00003-of-00027.safetensors",
|
509 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00003-of-00027.safetensors",
|
510 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00003-of-00027.safetensors",
|
511 |
+
"model.layers.5.self_attn.q_norm.weight": "model-00003-of-00027.safetensors",
|
512 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00003-of-00027.safetensors",
|
513 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00003-of-00027.safetensors",
|
514 |
+
"model.layers.50.input_layernorm.weight": "model-00022-of-00027.safetensors",
|
515 |
+
"model.layers.50.mlp.down_proj.weight": "model-00022-of-00027.safetensors",
|
516 |
+
"model.layers.50.mlp.gate_proj.weight": "model-00021-of-00027.safetensors",
|
517 |
+
"model.layers.50.mlp.up_proj.weight": "model-00021-of-00027.safetensors",
|
518 |
+
"model.layers.50.post_attention_layernorm.weight": "model-00022-of-00027.safetensors",
|
519 |
+
"model.layers.50.self_attn.k_norm.weight": "model-00021-of-00027.safetensors",
|
520 |
+
"model.layers.50.self_attn.k_proj.weight": "model-00021-of-00027.safetensors",
|
521 |
+
"model.layers.50.self_attn.o_proj.weight": "model-00021-of-00027.safetensors",
|
522 |
+
"model.layers.50.self_attn.q_norm.weight": "model-00021-of-00027.safetensors",
|
523 |
+
"model.layers.50.self_attn.q_proj.weight": "model-00021-of-00027.safetensors",
|
524 |
+
"model.layers.50.self_attn.v_proj.weight": "model-00021-of-00027.safetensors",
|
525 |
+
"model.layers.51.input_layernorm.weight": "model-00022-of-00027.safetensors",
|
526 |
+
"model.layers.51.mlp.down_proj.weight": "model-00022-of-00027.safetensors",
|
527 |
+
"model.layers.51.mlp.gate_proj.weight": "model-00022-of-00027.safetensors",
|
528 |
+
"model.layers.51.mlp.up_proj.weight": "model-00022-of-00027.safetensors",
|
529 |
+
"model.layers.51.post_attention_layernorm.weight": "model-00022-of-00027.safetensors",
|
530 |
+
"model.layers.51.self_attn.k_norm.weight": "model-00022-of-00027.safetensors",
|
531 |
+
"model.layers.51.self_attn.k_proj.weight": "model-00022-of-00027.safetensors",
|
532 |
+
"model.layers.51.self_attn.o_proj.weight": "model-00022-of-00027.safetensors",
|
533 |
+
"model.layers.51.self_attn.q_norm.weight": "model-00022-of-00027.safetensors",
|
534 |
+
"model.layers.51.self_attn.q_proj.weight": "model-00022-of-00027.safetensors",
|
535 |
+
"model.layers.51.self_attn.v_proj.weight": "model-00022-of-00027.safetensors",
|
536 |
+
"model.layers.52.input_layernorm.weight": "model-00022-of-00027.safetensors",
|
537 |
+
"model.layers.52.mlp.down_proj.weight": "model-00022-of-00027.safetensors",
|
538 |
+
"model.layers.52.mlp.gate_proj.weight": "model-00022-of-00027.safetensors",
|
539 |
+
"model.layers.52.mlp.up_proj.weight": "model-00022-of-00027.safetensors",
|
540 |
+
"model.layers.52.post_attention_layernorm.weight": "model-00022-of-00027.safetensors",
|
541 |
+
"model.layers.52.self_attn.k_norm.weight": "model-00022-of-00027.safetensors",
|
542 |
+
"model.layers.52.self_attn.k_proj.weight": "model-00022-of-00027.safetensors",
|
543 |
+
"model.layers.52.self_attn.o_proj.weight": "model-00022-of-00027.safetensors",
|
544 |
+
"model.layers.52.self_attn.q_norm.weight": "model-00022-of-00027.safetensors",
|
545 |
+
"model.layers.52.self_attn.q_proj.weight": "model-00022-of-00027.safetensors",
|
546 |
+
"model.layers.52.self_attn.v_proj.weight": "model-00022-of-00027.safetensors",
|
547 |
+
"model.layers.53.input_layernorm.weight": "model-00023-of-00027.safetensors",
|
548 |
+
"model.layers.53.mlp.down_proj.weight": "model-00023-of-00027.safetensors",
|
549 |
+
"model.layers.53.mlp.gate_proj.weight": "model-00023-of-00027.safetensors",
|
550 |
+
"model.layers.53.mlp.up_proj.weight": "model-00023-of-00027.safetensors",
|
551 |
+
"model.layers.53.post_attention_layernorm.weight": "model-00023-of-00027.safetensors",
|
552 |
+
"model.layers.53.self_attn.k_norm.weight": "model-00022-of-00027.safetensors",
|
553 |
+
"model.layers.53.self_attn.k_proj.weight": "model-00022-of-00027.safetensors",
|
554 |
+
"model.layers.53.self_attn.o_proj.weight": "model-00022-of-00027.safetensors",
|
555 |
+
"model.layers.53.self_attn.q_norm.weight": "model-00022-of-00027.safetensors",
|
556 |
+
"model.layers.53.self_attn.q_proj.weight": "model-00022-of-00027.safetensors",
|
557 |
+
"model.layers.53.self_attn.v_proj.weight": "model-00022-of-00027.safetensors",
|
558 |
+
"model.layers.54.input_layernorm.weight": "model-00023-of-00027.safetensors",
|
559 |
+
"model.layers.54.mlp.down_proj.weight": "model-00023-of-00027.safetensors",
|
560 |
+
"model.layers.54.mlp.gate_proj.weight": "model-00023-of-00027.safetensors",
|
561 |
+
"model.layers.54.mlp.up_proj.weight": "model-00023-of-00027.safetensors",
|
562 |
+
"model.layers.54.post_attention_layernorm.weight": "model-00023-of-00027.safetensors",
|
563 |
+
"model.layers.54.self_attn.k_norm.weight": "model-00023-of-00027.safetensors",
|
564 |
+
"model.layers.54.self_attn.k_proj.weight": "model-00023-of-00027.safetensors",
|
565 |
+
"model.layers.54.self_attn.o_proj.weight": "model-00023-of-00027.safetensors",
|
566 |
+
"model.layers.54.self_attn.q_norm.weight": "model-00023-of-00027.safetensors",
|
567 |
+
"model.layers.54.self_attn.q_proj.weight": "model-00023-of-00027.safetensors",
|
568 |
+
"model.layers.54.self_attn.v_proj.weight": "model-00023-of-00027.safetensors",
|
569 |
+
"model.layers.55.input_layernorm.weight": "model-00024-of-00027.safetensors",
|
570 |
+
"model.layers.55.mlp.down_proj.weight": "model-00024-of-00027.safetensors",
|
571 |
+
"model.layers.55.mlp.gate_proj.weight": "model-00023-of-00027.safetensors",
|
572 |
+
"model.layers.55.mlp.up_proj.weight": "model-00023-of-00027.safetensors",
|
573 |
+
"model.layers.55.post_attention_layernorm.weight": "model-00024-of-00027.safetensors",
|
574 |
+
"model.layers.55.self_attn.k_norm.weight": "model-00023-of-00027.safetensors",
|
575 |
+
"model.layers.55.self_attn.k_proj.weight": "model-00023-of-00027.safetensors",
|
576 |
+
"model.layers.55.self_attn.o_proj.weight": "model-00023-of-00027.safetensors",
|
577 |
+
"model.layers.55.self_attn.q_norm.weight": "model-00023-of-00027.safetensors",
|
578 |
+
"model.layers.55.self_attn.q_proj.weight": "model-00023-of-00027.safetensors",
|
579 |
+
"model.layers.55.self_attn.v_proj.weight": "model-00023-of-00027.safetensors",
|
580 |
+
"model.layers.56.input_layernorm.weight": "model-00024-of-00027.safetensors",
|
581 |
+
"model.layers.56.mlp.down_proj.weight": "model-00024-of-00027.safetensors",
|
582 |
+
"model.layers.56.mlp.gate_proj.weight": "model-00024-of-00027.safetensors",
|
583 |
+
"model.layers.56.mlp.up_proj.weight": "model-00024-of-00027.safetensors",
|
584 |
+
"model.layers.56.post_attention_layernorm.weight": "model-00024-of-00027.safetensors",
|
585 |
+
"model.layers.56.self_attn.k_norm.weight": "model-00024-of-00027.safetensors",
|
586 |
+
"model.layers.56.self_attn.k_proj.weight": "model-00024-of-00027.safetensors",
|
587 |
+
"model.layers.56.self_attn.o_proj.weight": "model-00024-of-00027.safetensors",
|
588 |
+
"model.layers.56.self_attn.q_norm.weight": "model-00024-of-00027.safetensors",
|
589 |
+
"model.layers.56.self_attn.q_proj.weight": "model-00024-of-00027.safetensors",
|
590 |
+
"model.layers.56.self_attn.v_proj.weight": "model-00024-of-00027.safetensors",
|
591 |
+
"model.layers.57.input_layernorm.weight": "model-00024-of-00027.safetensors",
|
592 |
+
"model.layers.57.mlp.down_proj.weight": "model-00024-of-00027.safetensors",
|
593 |
+
"model.layers.57.mlp.gate_proj.weight": "model-00024-of-00027.safetensors",
|
594 |
+
"model.layers.57.mlp.up_proj.weight": "model-00024-of-00027.safetensors",
|
595 |
+
"model.layers.57.post_attention_layernorm.weight": "model-00024-of-00027.safetensors",
|
596 |
+
"model.layers.57.self_attn.k_norm.weight": "model-00024-of-00027.safetensors",
|
597 |
+
"model.layers.57.self_attn.k_proj.weight": "model-00024-of-00027.safetensors",
|
598 |
+
"model.layers.57.self_attn.o_proj.weight": "model-00024-of-00027.safetensors",
|
599 |
+
"model.layers.57.self_attn.q_norm.weight": "model-00024-of-00027.safetensors",
|
600 |
+
"model.layers.57.self_attn.q_proj.weight": "model-00024-of-00027.safetensors",
|
601 |
+
"model.layers.57.self_attn.v_proj.weight": "model-00024-of-00027.safetensors",
|
602 |
+
"model.layers.58.input_layernorm.weight": "model-00025-of-00027.safetensors",
|
603 |
+
"model.layers.58.mlp.down_proj.weight": "model-00025-of-00027.safetensors",
|
604 |
+
"model.layers.58.mlp.gate_proj.weight": "model-00025-of-00027.safetensors",
|
605 |
+
"model.layers.58.mlp.up_proj.weight": "model-00025-of-00027.safetensors",
|
606 |
+
"model.layers.58.post_attention_layernorm.weight": "model-00025-of-00027.safetensors",
|
607 |
+
"model.layers.58.self_attn.k_norm.weight": "model-00024-of-00027.safetensors",
|
608 |
+
"model.layers.58.self_attn.k_proj.weight": "model-00024-of-00027.safetensors",
|
609 |
+
"model.layers.58.self_attn.o_proj.weight": "model-00024-of-00027.safetensors",
|
610 |
+
"model.layers.58.self_attn.q_norm.weight": "model-00024-of-00027.safetensors",
|
611 |
+
"model.layers.58.self_attn.q_proj.weight": "model-00024-of-00027.safetensors",
|
612 |
+
"model.layers.58.self_attn.v_proj.weight": "model-00024-of-00027.safetensors",
|
613 |
+
"model.layers.59.input_layernorm.weight": "model-00025-of-00027.safetensors",
|
614 |
+
"model.layers.59.mlp.down_proj.weight": "model-00025-of-00027.safetensors",
|
615 |
+
"model.layers.59.mlp.gate_proj.weight": "model-00025-of-00027.safetensors",
|
616 |
+
"model.layers.59.mlp.up_proj.weight": "model-00025-of-00027.safetensors",
|
617 |
+
"model.layers.59.post_attention_layernorm.weight": "model-00025-of-00027.safetensors",
|
618 |
+
"model.layers.59.self_attn.k_norm.weight": "model-00025-of-00027.safetensors",
|
619 |
+
"model.layers.59.self_attn.k_proj.weight": "model-00025-of-00027.safetensors",
|
620 |
+
"model.layers.59.self_attn.o_proj.weight": "model-00025-of-00027.safetensors",
|
621 |
+
"model.layers.59.self_attn.q_norm.weight": "model-00025-of-00027.safetensors",
|
622 |
+
"model.layers.59.self_attn.q_proj.weight": "model-00025-of-00027.safetensors",
|
623 |
+
"model.layers.59.self_attn.v_proj.weight": "model-00025-of-00027.safetensors",
|
624 |
+
"model.layers.6.input_layernorm.weight": "model-00004-of-00027.safetensors",
|
625 |
+
"model.layers.6.mlp.down_proj.weight": "model-00004-of-00027.safetensors",
|
626 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00004-of-00027.safetensors",
|
627 |
+
"model.layers.6.mlp.up_proj.weight": "model-00004-of-00027.safetensors",
|
628 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00004-of-00027.safetensors",
|
629 |
+
"model.layers.6.self_attn.k_norm.weight": "model-00004-of-00027.safetensors",
|
630 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00004-of-00027.safetensors",
|
631 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00004-of-00027.safetensors",
|
632 |
+
"model.layers.6.self_attn.q_norm.weight": "model-00004-of-00027.safetensors",
|
633 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00004-of-00027.safetensors",
|
634 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00004-of-00027.safetensors",
|
635 |
+
"model.layers.60.input_layernorm.weight": "model-00026-of-00027.safetensors",
|
636 |
+
"model.layers.60.mlp.down_proj.weight": "model-00026-of-00027.safetensors",
|
637 |
+
"model.layers.60.mlp.gate_proj.weight": "model-00025-of-00027.safetensors",
|
638 |
+
"model.layers.60.mlp.up_proj.weight": "model-00025-of-00027.safetensors",
|
639 |
+
"model.layers.60.post_attention_layernorm.weight": "model-00026-of-00027.safetensors",
|
640 |
+
"model.layers.60.self_attn.k_norm.weight": "model-00025-of-00027.safetensors",
|
641 |
+
"model.layers.60.self_attn.k_proj.weight": "model-00025-of-00027.safetensors",
|
642 |
+
"model.layers.60.self_attn.o_proj.weight": "model-00025-of-00027.safetensors",
|
643 |
+
"model.layers.60.self_attn.q_norm.weight": "model-00025-of-00027.safetensors",
|
644 |
+
"model.layers.60.self_attn.q_proj.weight": "model-00025-of-00027.safetensors",
|
645 |
+
"model.layers.60.self_attn.v_proj.weight": "model-00025-of-00027.safetensors",
|
646 |
+
"model.layers.61.input_layernorm.weight": "model-00026-of-00027.safetensors",
|
647 |
+
"model.layers.61.mlp.down_proj.weight": "model-00026-of-00027.safetensors",
|
648 |
+
"model.layers.61.mlp.gate_proj.weight": "model-00026-of-00027.safetensors",
|
649 |
+
"model.layers.61.mlp.up_proj.weight": "model-00026-of-00027.safetensors",
|
650 |
+
"model.layers.61.post_attention_layernorm.weight": "model-00026-of-00027.safetensors",
|
651 |
+
"model.layers.61.self_attn.k_norm.weight": "model-00026-of-00027.safetensors",
|
652 |
+
"model.layers.61.self_attn.k_proj.weight": "model-00026-of-00027.safetensors",
|
653 |
+
"model.layers.61.self_attn.o_proj.weight": "model-00026-of-00027.safetensors",
|
654 |
+
"model.layers.61.self_attn.q_norm.weight": "model-00026-of-00027.safetensors",
|
655 |
+
"model.layers.61.self_attn.q_proj.weight": "model-00026-of-00027.safetensors",
|
656 |
+
"model.layers.61.self_attn.v_proj.weight": "model-00026-of-00027.safetensors",
|
657 |
+
"model.layers.62.input_layernorm.weight": "model-00026-of-00027.safetensors",
|
658 |
+
"model.layers.62.mlp.down_proj.weight": "model-00026-of-00027.safetensors",
|
659 |
+
"model.layers.62.mlp.gate_proj.weight": "model-00026-of-00027.safetensors",
|
660 |
+
"model.layers.62.mlp.up_proj.weight": "model-00026-of-00027.safetensors",
|
661 |
+
"model.layers.62.post_attention_layernorm.weight": "model-00026-of-00027.safetensors",
|
662 |
+
"model.layers.62.self_attn.k_norm.weight": "model-00026-of-00027.safetensors",
|
663 |
+
"model.layers.62.self_attn.k_proj.weight": "model-00026-of-00027.safetensors",
|
664 |
+
"model.layers.62.self_attn.o_proj.weight": "model-00026-of-00027.safetensors",
|
665 |
+
"model.layers.62.self_attn.q_norm.weight": "model-00026-of-00027.safetensors",
|
666 |
+
"model.layers.62.self_attn.q_proj.weight": "model-00026-of-00027.safetensors",
|
667 |
+
"model.layers.62.self_attn.v_proj.weight": "model-00026-of-00027.safetensors",
|
668 |
+
"model.layers.63.input_layernorm.weight": "model-00027-of-00027.safetensors",
|
669 |
+
"model.layers.63.mlp.down_proj.weight": "model-00027-of-00027.safetensors",
|
670 |
+
"model.layers.63.mlp.gate_proj.weight": "model-00027-of-00027.safetensors",
|
671 |
+
"model.layers.63.mlp.up_proj.weight": "model-00027-of-00027.safetensors",
|
672 |
+
"model.layers.63.post_attention_layernorm.weight": "model-00027-of-00027.safetensors",
|
673 |
+
"model.layers.63.self_attn.k_norm.weight": "model-00026-of-00027.safetensors",
|
674 |
+
"model.layers.63.self_attn.k_proj.weight": "model-00026-of-00027.safetensors",
|
675 |
+
"model.layers.63.self_attn.o_proj.weight": "model-00026-of-00027.safetensors",
|
676 |
+
"model.layers.63.self_attn.q_norm.weight": "model-00026-of-00027.safetensors",
|
677 |
+
"model.layers.63.self_attn.q_proj.weight": "model-00026-of-00027.safetensors",
|
678 |
+
"model.layers.63.self_attn.v_proj.weight": "model-00026-of-00027.safetensors",
|
679 |
+
"model.layers.7.input_layernorm.weight": "model-00004-of-00027.safetensors",
|
680 |
+
"model.layers.7.mlp.down_proj.weight": "model-00004-of-00027.safetensors",
|
681 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00004-of-00027.safetensors",
|
682 |
+
"model.layers.7.mlp.up_proj.weight": "model-00004-of-00027.safetensors",
|
683 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00004-of-00027.safetensors",
|
684 |
+
"model.layers.7.self_attn.k_norm.weight": "model-00004-of-00027.safetensors",
|
685 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00004-of-00027.safetensors",
|
686 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00004-of-00027.safetensors",
|
687 |
+
"model.layers.7.self_attn.q_norm.weight": "model-00004-of-00027.safetensors",
|
688 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00004-of-00027.safetensors",
|
689 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00004-of-00027.safetensors",
|
690 |
+
"model.layers.8.input_layernorm.weight": "model-00005-of-00027.safetensors",
|
691 |
+
"model.layers.8.mlp.down_proj.weight": "model-00005-of-00027.safetensors",
|
692 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00005-of-00027.safetensors",
|
693 |
+
"model.layers.8.mlp.up_proj.weight": "model-00005-of-00027.safetensors",
|
694 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00005-of-00027.safetensors",
|
695 |
+
"model.layers.8.self_attn.k_norm.weight": "model-00004-of-00027.safetensors",
|
696 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00004-of-00027.safetensors",
|
697 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00004-of-00027.safetensors",
|
698 |
+
"model.layers.8.self_attn.q_norm.weight": "model-00004-of-00027.safetensors",
|
699 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00004-of-00027.safetensors",
|
700 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00004-of-00027.safetensors",
|
701 |
+
"model.layers.9.input_layernorm.weight": "model-00005-of-00027.safetensors",
|
702 |
+
"model.layers.9.mlp.down_proj.weight": "model-00005-of-00027.safetensors",
|
703 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00005-of-00027.safetensors",
|
704 |
+
"model.layers.9.mlp.up_proj.weight": "model-00005-of-00027.safetensors",
|
705 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00005-of-00027.safetensors",
|
706 |
+
"model.layers.9.self_attn.k_norm.weight": "model-00005-of-00027.safetensors",
|
707 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00005-of-00027.safetensors",
|
708 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00005-of-00027.safetensors",
|
709 |
+
"model.layers.9.self_attn.q_norm.weight": "model-00005-of-00027.safetensors",
|
710 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00005-of-00027.safetensors",
|
711 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00005-of-00027.safetensors",
|
712 |
+
"model.norm.weight": "model-00027-of-00027.safetensors"
|
713 |
+
}
|
714 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"clean_up_tokenization_spaces": false,
|
231 |
+
"eos_token": "<|im_end|>",
|
232 |
+
"errors": "replace",
|
233 |
+
"extra_special_tokens": {},
|
234 |
+
"model_max_length": 131072,
|
235 |
+
"pad_token": "<|endoftext|>",
|
236 |
+
"padding_side": "left",
|
237 |
+
"split_special_tokens": false,
|
238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
239 |
+
"unk_token": null
|
240 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"total_flos": 5.0940118456365744e+19,
|
4 |
+
"train_loss": 0.6584736234383565,
|
5 |
+
"train_runtime": 47270.2985,
|
6 |
+
"train_samples_per_second": 5.653,
|
7 |
+
"train_steps_per_second": 0.011
|
8 |
+
}
|
trainer_log.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a38d64247c50b3652298877b4e74d17364af0af1094483a594536051460c2437
|
3 |
+
size 6161
|
training_eval_loss.png
ADDED
![]() |
training_loss.png
ADDED
![]() |