--- library_name: peft license: other base_model: Qwen/Qwen3-32B tags: - llama-factory - lora - generated_from_trainer model-index: - name: Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct-seed-4201 results: [] --- # Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct-seed-4201 This model is a fine-tuned version of [Qwen/Qwen3-32B](https://huggingface.co//Qwen/Qwen3-32B) on the alpaca-th-52k, the dolly-th-15k and the wangchan-instruct datasets. It achieves the following results on the evaluation set: - Loss: 0.6413 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 4201 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9293 | 0.0575 | 10 | 1.0471 | | 0.8085 | 0.1149 | 20 | 0.8245 | | 0.7547 | 0.1724 | 30 | 0.7581 | | 0.7289 | 0.2299 | 40 | 0.7386 | | 0.6965 | 0.2874 | 50 | 0.7242 | | 0.6848 | 0.3448 | 60 | 0.7109 | | 0.693 | 0.4023 | 70 | 0.7022 | | 0.7101 | 0.4598 | 80 | 0.6947 | | 0.7293 | 0.5172 | 90 | 0.6888 | | 0.6852 | 0.5747 | 100 | 0.6822 | | 0.7033 | 0.6322 | 110 | 0.6770 | | 0.6815 | 0.6897 | 120 | 0.6736 | | 0.679 | 0.7471 | 130 | 0.6707 | | 0.6571 | 0.8046 | 140 | 0.6682 | | 0.6491 | 0.8621 | 150 | 0.6660 | | 0.7015 | 0.9195 | 160 | 0.6636 | | 0.6523 | 0.9770 | 170 | 0.6619 | | 0.6672 | 1.0345 | 180 | 0.6602 | | 0.6862 | 1.0920 | 190 | 0.6588 | | 0.6755 | 1.1494 | 200 | 0.6577 | | 0.6279 | 1.2069 | 210 | 0.6563 | | 0.6622 | 1.2644 | 220 | 0.6551 | | 0.6329 | 1.3218 | 230 | 0.6542 | | 0.6559 | 1.3793 | 240 | 0.6528 | | 0.6389 | 1.4368 | 250 | 0.6517 | | 0.6476 | 1.4943 | 260 | 0.6506 | | 0.6412 | 1.5517 | 270 | 0.6497 | | 0.6232 | 1.6092 | 280 | 0.6485 | | 0.6243 | 1.6667 | 290 | 0.6478 | | 0.6467 | 1.7241 | 300 | 0.6469 | | 0.6146 | 1.7816 | 310 | 0.6460 | | 0.6386 | 1.8391 | 320 | 0.6450 | | 0.6456 | 1.8966 | 330 | 0.6443 | | 0.6402 | 1.9540 | 340 | 0.6437 | | 0.6455 | 2.0115 | 350 | 0.6434 | | 0.5888 | 2.0690 | 360 | 0.6437 | | 0.6267 | 2.1264 | 370 | 0.6435 | | 0.6292 | 2.1839 | 380 | 0.6434 | | 0.6058 | 2.2414 | 390 | 0.6432 | | 0.6221 | 2.2989 | 400 | 0.6427 | | 0.6254 | 2.3563 | 410 | 0.6428 | | 0.6178 | 2.4138 | 420 | 0.6423 | | 0.6161 | 2.4713 | 430 | 0.6420 | | 0.634 | 2.5287 | 440 | 0.6419 | | 0.6241 | 2.5862 | 450 | 0.6418 | | 0.6084 | 2.6437 | 460 | 0.6416 | | 0.6264 | 2.7011 | 470 | 0.6415 | | 0.608 | 2.7586 | 480 | 0.6413 | | 0.6039 | 2.8161 | 490 | 0.6413 | | 0.6445 | 2.8736 | 500 | 0.6413 | | 0.6249 | 2.9310 | 510 | 0.6413 | | 0.6006 | 2.9885 | 520 | 0.6413 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1