File size: 4,359 Bytes
a81aace
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
library_name: peft
license: other
base_model: Qwen/Qwen3-32B
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct

This model is a fine-tuned version of [Qwen/Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) on the alpaca-th-52k, the dolly-th-15k and the wangchan-instruct datasets.
It achieves the following results on the evaluation set:
- Loss: 0.6417

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9564        | 0.0575 | 10   | 1.0507          |
| 0.806         | 0.1149 | 20   | 0.8268          |
| 0.7551        | 0.1724 | 30   | 0.7598          |
| 0.7158        | 0.2299 | 40   | 0.7396          |
| 0.7217        | 0.2874 | 50   | 0.7252          |
| 0.7078        | 0.3448 | 60   | 0.7130          |
| 0.6719        | 0.4023 | 70   | 0.7029          |
| 0.6855        | 0.4598 | 80   | 0.6964          |
| 0.7328        | 0.5172 | 90   | 0.6907          |
| 0.6663        | 0.5747 | 100  | 0.6848          |
| 0.7049        | 0.6322 | 110  | 0.6792          |
| 0.6772        | 0.6897 | 120  | 0.6751          |
| 0.687         | 0.7471 | 130  | 0.6721          |
| 0.6786        | 0.8046 | 140  | 0.6700          |
| 0.6389        | 0.8621 | 150  | 0.6672          |
| 0.6673        | 0.9195 | 160  | 0.6649          |
| 0.6711        | 0.9770 | 170  | 0.6633          |
| 0.6614        | 1.0345 | 180  | 0.6615          |
| 0.6219        | 1.0920 | 190  | 0.6602          |
| 0.6542        | 1.1494 | 200  | 0.6587          |
| 0.6596        | 1.2069 | 210  | 0.6572          |
| 0.6526        | 1.2644 | 220  | 0.6567          |
| 0.657         | 1.3218 | 230  | 0.6551          |
| 0.6124        | 1.3793 | 240  | 0.6537          |
| 0.6489        | 1.4368 | 250  | 0.6526          |
| 0.614         | 1.4943 | 260  | 0.6515          |
| 0.656         | 1.5517 | 270  | 0.6504          |
| 0.6255        | 1.6092 | 280  | 0.6492          |
| 0.6419        | 1.6667 | 290  | 0.6486          |
| 0.6275        | 1.7241 | 300  | 0.6473          |
| 0.6324        | 1.7816 | 310  | 0.6466          |
| 0.6334        | 1.8391 | 320  | 0.6461          |
| 0.6213        | 1.8966 | 330  | 0.6452          |
| 0.6269        | 1.9540 | 340  | 0.6443          |
| 0.6408        | 2.0115 | 350  | 0.6437          |
| 0.6213        | 2.0690 | 360  | 0.6441          |
| 0.6146        | 2.1264 | 370  | 0.6440          |
| 0.6572        | 2.1839 | 380  | 0.6438          |
| 0.6264        | 2.2414 | 390  | 0.6435          |
| 0.6051        | 2.2989 | 400  | 0.6434          |
| 0.5983        | 2.3563 | 410  | 0.6429          |
| 0.6388        | 2.4138 | 420  | 0.6425          |
| 0.6227        | 2.4713 | 430  | 0.6425          |
| 0.6335        | 2.5287 | 440  | 0.6421          |
| 0.6247        | 2.5862 | 450  | 0.6420          |
| 0.6404        | 2.6437 | 460  | 0.6418          |
| 0.6218        | 2.7011 | 470  | 0.6418          |
| 0.6368        | 2.7586 | 480  | 0.6417          |
| 0.6191        | 2.8161 | 490  | 0.6417          |
| 0.6234        | 2.8736 | 500  | 0.6417          |
| 0.6079        | 2.9310 | 510  | 0.6417          |
| 0.6243        | 2.9885 | 520  | 0.6417          |


### Framework versions

- PEFT 0.15.2
- Transformers 4.52.3
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1