--- library_name: peft license: other base_model: Qwen/Qwen3-32B tags: - llama-factory - lora - generated_from_trainer model-index: - name: Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct results: [] --- # Qwen3-32B-alpaca-th-52k-dolly-th-15k-wangchan-instruct This model is a fine-tuned version of [Qwen/Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) on the alpaca-th-52k, the dolly-th-15k and the wangchan-instruct datasets. It achieves the following results on the evaluation set: - Loss: 0.6417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9564 | 0.0575 | 10 | 1.0507 | | 0.806 | 0.1149 | 20 | 0.8268 | | 0.7551 | 0.1724 | 30 | 0.7598 | | 0.7158 | 0.2299 | 40 | 0.7396 | | 0.7217 | 0.2874 | 50 | 0.7252 | | 0.7078 | 0.3448 | 60 | 0.7130 | | 0.6719 | 0.4023 | 70 | 0.7029 | | 0.6855 | 0.4598 | 80 | 0.6964 | | 0.7328 | 0.5172 | 90 | 0.6907 | | 0.6663 | 0.5747 | 100 | 0.6848 | | 0.7049 | 0.6322 | 110 | 0.6792 | | 0.6772 | 0.6897 | 120 | 0.6751 | | 0.687 | 0.7471 | 130 | 0.6721 | | 0.6786 | 0.8046 | 140 | 0.6700 | | 0.6389 | 0.8621 | 150 | 0.6672 | | 0.6673 | 0.9195 | 160 | 0.6649 | | 0.6711 | 0.9770 | 170 | 0.6633 | | 0.6614 | 1.0345 | 180 | 0.6615 | | 0.6219 | 1.0920 | 190 | 0.6602 | | 0.6542 | 1.1494 | 200 | 0.6587 | | 0.6596 | 1.2069 | 210 | 0.6572 | | 0.6526 | 1.2644 | 220 | 0.6567 | | 0.657 | 1.3218 | 230 | 0.6551 | | 0.6124 | 1.3793 | 240 | 0.6537 | | 0.6489 | 1.4368 | 250 | 0.6526 | | 0.614 | 1.4943 | 260 | 0.6515 | | 0.656 | 1.5517 | 270 | 0.6504 | | 0.6255 | 1.6092 | 280 | 0.6492 | | 0.6419 | 1.6667 | 290 | 0.6486 | | 0.6275 | 1.7241 | 300 | 0.6473 | | 0.6324 | 1.7816 | 310 | 0.6466 | | 0.6334 | 1.8391 | 320 | 0.6461 | | 0.6213 | 1.8966 | 330 | 0.6452 | | 0.6269 | 1.9540 | 340 | 0.6443 | | 0.6408 | 2.0115 | 350 | 0.6437 | | 0.6213 | 2.0690 | 360 | 0.6441 | | 0.6146 | 2.1264 | 370 | 0.6440 | | 0.6572 | 2.1839 | 380 | 0.6438 | | 0.6264 | 2.2414 | 390 | 0.6435 | | 0.6051 | 2.2989 | 400 | 0.6434 | | 0.5983 | 2.3563 | 410 | 0.6429 | | 0.6388 | 2.4138 | 420 | 0.6425 | | 0.6227 | 2.4713 | 430 | 0.6425 | | 0.6335 | 2.5287 | 440 | 0.6421 | | 0.6247 | 2.5862 | 450 | 0.6420 | | 0.6404 | 2.6437 | 460 | 0.6418 | | 0.6218 | 2.7011 | 470 | 0.6418 | | 0.6368 | 2.7586 | 480 | 0.6417 | | 0.6191 | 2.8161 | 490 | 0.6417 | | 0.6234 | 2.8736 | 500 | 0.6417 | | 0.6079 | 2.9310 | 510 | 0.6417 | | 0.6243 | 2.9885 | 520 | 0.6417 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1