--- library_name: peft license: other base_model: Qwen/Qwen3-32B tags: - llama-factory - lora - generated_from_trainer model-index: - name: Qwen3-32B-medqa-seed-4201 results: [] --- # Qwen3-32B-medqa-seed-4201 This model is a fine-tuned version of [Qwen/Qwen3-32B](https://huggingface.co//Qwen/Qwen3-32B) on the medqa dataset. It achieves the following results on the evaluation set: - Loss: 0.0247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 4201 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4047 | 0.1163 | 10 | 1.1082 | | 0.0377 | 0.2326 | 20 | 0.0421 | | 0.0309 | 0.3488 | 30 | 0.0327 | | 0.0276 | 0.4651 | 40 | 0.0300 | | 0.0307 | 0.5814 | 50 | 0.0288 | | 0.0266 | 0.6977 | 60 | 0.0282 | | 0.0293 | 0.8140 | 70 | 0.0276 | | 0.0254 | 0.9302 | 80 | 0.0269 | | 0.0215 | 1.0465 | 90 | 0.0265 | | 0.0176 | 1.1628 | 100 | 0.0262 | | 0.0227 | 1.2791 | 110 | 0.0257 | | 0.0198 | 1.3953 | 120 | 0.0254 | | 0.0245 | 1.5116 | 130 | 0.0253 | | 0.0217 | 1.6279 | 140 | 0.0252 | | 0.0209 | 1.7442 | 150 | 0.0249 | | 0.0227 | 1.8605 | 160 | 0.0247 | | 0.0195 | 1.9767 | 170 | 0.0244 | | 0.0174 | 2.0930 | 180 | 0.0246 | | 0.018 | 2.2093 | 190 | 0.0247 | | 0.0176 | 2.3256 | 200 | 0.0248 | | 0.0149 | 2.4419 | 210 | 0.0247 | | 0.0176 | 2.5581 | 220 | 0.0247 | | 0.016 | 2.6744 | 230 | 0.0247 | | 0.0202 | 2.7907 | 240 | 0.0247 | | 0.0144 | 2.9070 | 250 | 0.0247 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.3 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1