ajsbsd commited on
Commit
9517e5d
·
verified ·
1 Parent(s): 0ac26aa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -3
README.md CHANGED
@@ -1,3 +1,86 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - ajsbsd/navier-stokes-2d-dataset
7
+ pipeline_tag: graph-ml
8
+ tags:
9
+ - neural-operator
10
+ - fourier-neural-operator
11
+ - scientific-machine-learning
12
+ - partial-differential-equations
13
+ - surrogate-model
14
+ datasets:
15
+ - custom-dataset # Replace with specific dataset name if publicly available
16
+ metrics:
17
+ - custom-metric # Replace with specific metrics used, e.g., L2 error, MSE
18
+ model-index:
19
+ - name: Fourier Neural Operator (FNO)
20
+ results:
21
+ - task:
22
+ name: Solving Partial Differential Equations
23
+ type: text-generation # Or a more specific task type if available in Hugging Face tasks
24
+ dataset:
25
+ name: Custom Dataset
26
+ type: custom
27
+ metrics:
28
+ - type: custom-metric
29
+ value: 0.0 # Replace with actual metric value from training
30
+
31
+ model_name: "fno_trained_checkpoint" # Replace with a more specific name if desired
32
+ model_author: "Neural Operator Community/Your Name" # Replace with your name/organization
33
+ model_summary: "A Fourier Neural Operator (FNO) checkpoint trained for solving a specific partial differential equation, as described by the training script."
34
+ model_architecture: "Fourier Neural Operator (FNO)"
35
+ model_type: "Neural Network for Operator Learning"
36
+
37
+ # Training Details
38
+ training_procedure:
39
+ code_repository: "[email protected]:neuraloperator/NNs-to-NOs.git"
40
+ training_script: "python train_single_res.py fno.yaml"
41
+ epochs: 10
42
+ software_framework: "PyTorch" # Assuming PyTorch based on common NO implementations
43
+ hardware_setup: "Not specified in training procedure, assumed standard GPU setup" # Add specific hardware if known
44
+ training_duration: "Not specified in training procedure" # Add actual duration if known
45
+ hyperparameters:
46
+ # Include key hyperparameters from fno.yaml if possible, e.g.:
47
+ # learning_rate: 0.001
48
+ # optimizer: "Adam"
49
+ # batch_size: 32
50
+ # resolution: [64, 64] # Example resolution
51
+ # modes: 12 # Example modes for FNO
52
+ # width: 20 # Example width for FNO
53
+ # ... (add other relevant hyperparameters from fno.yaml)
54
+ data_preprocessing: "Refer to the training script and dataset documentation for details."
55
+ validation_strategy: "Not explicitly stated, assume standard validation split in fno.yaml or script." # Add details if known
56
+
57
+ # Intended Use
58
+ intended_uses:
59
+ - "Surrogate modeling for Partial Differential Equations"
60
+ - "Accelerating scientific simulations"
61
+ - "Research in neural operators and scientific machine learning"
62
+
63
+ # Limitations and Biases
64
+ limitations:
65
+ - "Performance may vary significantly on out-of-distribution data."
66
+ - "Generalizability is highly dependent on the training data distribution."
67
+ - "Computational resources required for inference may be substantial depending on problem size."
68
+ biases:
69
+ - "Potential biases inherent in the training data." # Describe any known biases in the dataset
70
+
71
+ # Ethical Considerations
72
+ ethical_considerations:
73
+ - "Ensure responsible deployment in safety-critical applications."
74
+ - "Transparency in data sources and model limitations is crucial."
75
+
76
+ # Citation (if applicable)
77
+ citation: |
78
+ @article{your_article_citation,
79
+ title={Your Article Title},
80
+ author={Author One and Author Two},
81
+ journal={Journal Name},
82
+ year={Year},
83
+ volume={Volume},
84
+ number={Number},
85
+ pages={Pages}
86
+ }