--- language: tr widget: - text: "Almanya, koronavirüs aşısını geliştiren Dr. Özlem Türeci ve eşi Prof. Dr. Uğur Şahin'e liyakat nişanı verdi" --- # Turkish Named Entity Recognition (NER) Model This model is the fine-tuned model of dbmdz/convbert-base-turkish-cased (ConvBERTurk) using a reviewed version of well known Turkish NER dataset (https://github.com/stefan-it/turkish-bert/files/4558187/nerdata.txt). The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper. # Fine-tuning parameters: ``` task = "ner" model_checkpoint = "dbmdz/convbert-base-turkish-cased" batch_size = 8 label_list = ['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'] max_length = 512 learning_rate = 2e-5 num_train_epochs = 3 weight_decay = 0.01 ``` # How to use: ``` model = AutoModelForTokenClassification.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner") tokenizer = AutoTokenizer.from_pretrained("akdeniz27/convbert-base-turkish-cased-ner") ner = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="first") ner("") # Pls refer "https://huggingface.co/transformers/_modules/transformers/pipelines/token_classification.html" for entity grouping with aggregation_strategy parameter. ``` # Reference test results: * accuracy: 0.9937648915431506 * f1: 0.9610945644080416 * precision: 0.9619899385131359 * recall: 0.9602008554956295