Model save
Browse files- README.md +58 -0
- all_results.json +8 -0
- generation_config.json +14 -0
- train_results.json +8 -0
- trainer_state.json +126 -0
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-3B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: oR1-Qwen-3B-Agentic-e6-lr3-b8
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- sft
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for oR1-Qwen-3B-Agentic-e6-lr3-b8
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="akseljoonas/oR1-Qwen-3B-Agentic-e6-lr3-b8", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/akseljoonas-university-of-groningen/huggingface/runs/rwjlalz5)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with SFT.
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.16.0
|
38 |
+
- Transformers: 4.50.0
|
39 |
+
- Pytorch: 2.6.0
|
40 |
+
- Datasets: 3.5.0
|
41 |
+
- Tokenizers: 0.21.1
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
Cite TRL as:
|
48 |
+
|
49 |
+
```bibtex
|
50 |
+
@misc{vonwerra2022trl,
|
51 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
52 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
53 |
+
year = 2020,
|
54 |
+
journal = {GitHub repository},
|
55 |
+
publisher = {GitHub},
|
56 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
57 |
+
}
|
58 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 34346052091904.0,
|
3 |
+
"train_loss": 0.7848673338691393,
|
4 |
+
"train_runtime": 434.8428,
|
5 |
+
"train_samples": 1928,
|
6 |
+
"train_samples_per_second": 7.437,
|
7 |
+
"train_steps_per_second": 0.11
|
8 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.50.0"
|
14 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 34346052091904.0,
|
3 |
+
"train_loss": 0.7848673338691393,
|
4 |
+
"train_runtime": 434.8428,
|
5 |
+
"train_samples": 1928,
|
6 |
+
"train_samples_per_second": 7.437,
|
7 |
+
"train_steps_per_second": 0.11
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 5.352941176470588,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 48,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.5882352941176471,
|
14 |
+
"grad_norm": 0.6982608001685862,
|
15 |
+
"learning_rate": 3e-05,
|
16 |
+
"loss": 1.1393,
|
17 |
+
"mean_token_accuracy": 0.7558641612529755,
|
18 |
+
"num_tokens": 2505918.0,
|
19 |
+
"step": 5
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 1.1176470588235294,
|
23 |
+
"grad_norm": 0.8721317772129112,
|
24 |
+
"learning_rate": 2.6511627906976747e-05,
|
25 |
+
"loss": 0.9891,
|
26 |
+
"mean_token_accuracy": 0.7771306931972504,
|
27 |
+
"num_tokens": 4791423.0,
|
28 |
+
"step": 10
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 1.7058823529411766,
|
32 |
+
"grad_norm": 0.5754062205048323,
|
33 |
+
"learning_rate": 2.302325581395349e-05,
|
34 |
+
"loss": 0.8402,
|
35 |
+
"mean_token_accuracy": 0.806378772854805,
|
36 |
+
"num_tokens": 7330272.0,
|
37 |
+
"step": 15
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 2.235294117647059,
|
41 |
+
"grad_norm": 0.36393271751138273,
|
42 |
+
"learning_rate": 1.9534883720930235e-05,
|
43 |
+
"loss": 0.8254,
|
44 |
+
"mean_token_accuracy": 0.8107879327403175,
|
45 |
+
"num_tokens": 9618952.0,
|
46 |
+
"step": 20
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 2.8235294117647056,
|
50 |
+
"grad_norm": 0.3011049182677609,
|
51 |
+
"learning_rate": 1.6046511627906977e-05,
|
52 |
+
"loss": 0.7159,
|
53 |
+
"mean_token_accuracy": 0.8305143177509308,
|
54 |
+
"num_tokens": 12114377.0,
|
55 |
+
"step": 25
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"epoch": 3.3529411764705883,
|
59 |
+
"grad_norm": 0.29098744752650113,
|
60 |
+
"learning_rate": 1.2558139534883723e-05,
|
61 |
+
"loss": 0.7149,
|
62 |
+
"mean_token_accuracy": 0.8326265580124326,
|
63 |
+
"num_tokens": 14409009.0,
|
64 |
+
"step": 30
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 3.9411764705882355,
|
68 |
+
"grad_norm": 0.9780394699701438,
|
69 |
+
"learning_rate": 9.069767441860465e-06,
|
70 |
+
"loss": 0.6588,
|
71 |
+
"mean_token_accuracy": 0.8438952833414077,
|
72 |
+
"num_tokens": 16918082.0,
|
73 |
+
"step": 35
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 4.470588235294118,
|
77 |
+
"grad_norm": 0.2592802167916596,
|
78 |
+
"learning_rate": 5.581395348837209e-06,
|
79 |
+
"loss": 0.674,
|
80 |
+
"mean_token_accuracy": 0.8421611289183298,
|
81 |
+
"num_tokens": 19217454.0,
|
82 |
+
"step": 40
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 5.0,
|
86 |
+
"grad_norm": 0.2479521464887133,
|
87 |
+
"learning_rate": 2.0930232558139536e-06,
|
88 |
+
"loss": 0.5866,
|
89 |
+
"mean_token_accuracy": 0.857908116446601,
|
90 |
+
"num_tokens": 21475135.0,
|
91 |
+
"step": 45
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 5.352941176470588,
|
95 |
+
"mean_token_accuracy": 0.842411478360494,
|
96 |
+
"num_tokens": 22979390.0,
|
97 |
+
"step": 48,
|
98 |
+
"total_flos": 34346052091904.0,
|
99 |
+
"train_loss": 0.7848673338691393,
|
100 |
+
"train_runtime": 434.8428,
|
101 |
+
"train_samples_per_second": 7.437,
|
102 |
+
"train_steps_per_second": 0.11
|
103 |
+
}
|
104 |
+
],
|
105 |
+
"logging_steps": 5,
|
106 |
+
"max_steps": 48,
|
107 |
+
"num_input_tokens_seen": 0,
|
108 |
+
"num_train_epochs": 6,
|
109 |
+
"save_steps": 500,
|
110 |
+
"stateful_callbacks": {
|
111 |
+
"TrainerControl": {
|
112 |
+
"args": {
|
113 |
+
"should_epoch_stop": false,
|
114 |
+
"should_evaluate": false,
|
115 |
+
"should_log": false,
|
116 |
+
"should_save": true,
|
117 |
+
"should_training_stop": true
|
118 |
+
},
|
119 |
+
"attributes": {}
|
120 |
+
}
|
121 |
+
},
|
122 |
+
"total_flos": 34346052091904.0,
|
123 |
+
"train_batch_size": 2,
|
124 |
+
"trial_name": null,
|
125 |
+
"trial_params": null
|
126 |
+
}
|