alcheung0213 commited on
Commit
3e275ef
·
1 Parent(s): baa7e0f

Finalized model with better hyperparameters and also including Determined AI checkpoint.pt

Browse files
README.md CHANGED
@@ -8,7 +8,9 @@ tags:
8
  datasets:
9
  - medmnist
10
  metrics:
 
11
  - accuracy
 
12
  ---
13
 
14
  # MedMNIST Active Learning Model
@@ -27,19 +29,65 @@ This model is designed for image classification tasks within the medical imaging
27
 
28
  ## Training Procedure
29
 
30
- - **Dataset:** [PathMNIST](https://medmnist.com/)
31
- - **Data Augmentation:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  - Random resized cropping
33
  - Horizontal flipping
34
  - Random rotations
35
  - Color jittering
36
  - Gaussian blur
37
  - RandAugment
38
- - **Optimizer:** Stochastic Gradient Descent (SGD) with momentum
39
- - **Learning Rate Scheduler:** ReduceLROnPlateau
40
- - **Active Learning Strategy:** Mixed sampling combining uncertainty sampling and diversity sampling using Monte Carlo dropout and K-means clustering.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  ## Usage
 
 
43
 
44
  To utilize this model:
45
 
@@ -84,27 +132,13 @@ To utilize this model:
84
  print(f"Predicted class: {prediction}")
85
  ```
86
 
87
- ## Evaluation
88
-
89
- The model was evaluated on the validation set of PathMNIST. Key performance metrics include:
90
-
91
- - **Accuracy:** 94%
92
- - **Loss:** 0.1775
93
-
94
- ## Evaluation Metrics
95
-
96
- The following plot illustrates the validation loss over training batches during the active learning process. The consistent decrease in validation loss demonstrates the effectiveness of the active learning strategy in improving model performance.
97
-
98
- ![Validation Loss](image.png)
99
-
100
- - **Validation Loss**: The graph shows a steady decline, indicating successful learning and convergence.
101
- - **Batches**: Represents the number of iterations over the dataset.
102
-
103
  ## License
104
 
105
- This project is licensed under the mit License.
106
 
107
  ## Acknowledgements
108
 
109
  - [MedMNIST Dataset](https://medmnist.com/)
110
  - [Determined AI](https://determined.ai/)
 
 
 
8
  datasets:
9
  - medmnist
10
  metrics:
11
+ - loss
12
  - accuracy
13
+ - area under the curve
14
  ---
15
 
16
  # MedMNIST Active Learning Model
 
29
 
30
  ## Training Procedure
31
 
32
+ ### Training Hyperparameters
33
+
34
+ | Hyperparameter | Value |
35
+ |------------------------|------------------------|
36
+ | Batch Size | 53 |
37
+ | Initial Labeled Size | 3559 |
38
+ | Learning Rate | 0.01332344940133225 |
39
+ | MC Dropout Passes | 6 |
40
+ | Samples to Label | 4430 |
41
+ | Weight Decay | 0.00021921795989143406 |
42
+
43
+ ### Optimizer Settings
44
+
45
+ The optimizer used during training was Stochastic Gradient Descent(SDG), with the following settings and a Learning Rate Scheduler of ReduceLROnPlateau:
46
+ - `learning_rate = 0.01332344940133225`
47
+ - `momentum = 0.9`
48
+ - `weight_decay = 0.00021921795989143406`
49
+
50
+ The model was trained with float32 precision.
51
+
52
+ ### Dataset
53
+ [PathMNIST](https://medmnist.com/)
54
+
55
+ ### Data Augmentation
56
  - Random resized cropping
57
  - Horizontal flipping
58
  - Random rotations
59
  - Color jittering
60
  - Gaussian blur
61
  - RandAugment
62
+
63
+ ### Active Learning Strategy
64
+
65
+ The active learning process was based on a mixed sampling strategy:
66
+ - **Uncertainty Sampling**: Monte Carlo (MC) dropout was used to estimate uncertainty.
67
+ - **Diversity Sampling**: K-means clustering was employed to ensure diverse samples.
68
+
69
+ ## Evaluation
70
+
71
+ The model was evaluated on the validation set of PathMNIST. Key performance metrics include:
72
+
73
+ - **Accuracy:** 94.72%
74
+ - **Loss:** 0.2397
75
+ - **AUC:** 99.73%
76
+
77
+ ## Graphs
78
+
79
+ The following plots illustrates the validation loss, validation accuracy, and validation auc over batches(number of iterations over the dataset) during the active learning process.
80
+
81
+ - **Validation Loss**
82
+ ![Validation Loss](images/test_loss.png)
83
+ - **Validation Accuracy**
84
+ ![Validation Accuracy](images/test_accuracy.png)
85
+ - **Validation AUC**
86
+ ![Validation AUC](images/test_auc.png)
87
 
88
  ## Usage
89
+ All code for this model can be accessed in the following GitHub Repository:
90
+ [Allen Cheung Determined_AI_Hackathon](https://github.com/AllenCheung0213/Determined_AI_Hackathon)
91
 
92
  To utilize this model:
93
 
 
132
  print(f"Predicted class: {prediction}")
133
  ```
134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  ## License
136
 
137
+ This project is licensed under the MIT License.
138
 
139
  ## Acknowledgements
140
 
141
  - [MedMNIST Dataset](https://medmnist.com/)
142
  - [Determined AI](https://determined.ai/)
143
+ - **Survey on Deep Active Learning**: Wang, H., Jin, Q., Li, S., Liu, S., Wang, M., & Song, Z. (2024). A comprehensive survey on deep active learning in medical image analysis. *Medical Image Analysis*, 95, 103201. [https://doi.org/10.1016/j.media.2024.103201](https://doi.org/10.1016/j.media.2024.103201)
144
+
image.png → images/image.png RENAMED
File without changes
images/test_accuracy.png ADDED
images/test_auc.png ADDED
images/test_loss.png ADDED
model/Determined_AI_checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90601111b45e812a9aa039a02d9bb133468216b348f3ff067ac211a0787e2e97
3
+ size 188520735
model/Determined_AI_metadata.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "epochs_completed": 18,
3
+ "steps_completed": 54905
4
+ }
model/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "resnet50",
3
+ "num_classes": 9,
4
+ "input_size": [
5
+ 3,
6
+ 28,
7
+ 28
8
+ ],
9
+ "architecture": "ResNet50"
10
+ }
pytorch_model.bin → model/pytorch_model.bin RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2e047c032bcb68539b69c2ce93a52a7f72d5c45d9e512ee38f3f858f337dc210
3
- size 94393034
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db3f9ab941286c336727e5a0c4d4b35ff1b8db5b7f8519573600bd2ee0108ef7
3
+ size 94397514