--- library_name: transformers license: other base_model: google/medsiglip-448 tags: - generated_from_trainer model-index: - name: medsiglip-448-ft-tb-screening results: [] --- # medsiglip-448-ft-tb-screening This model is a fine-tuned version of [google/medsiglip-448](https://huggingface.co/google/medsiglip-448) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.5064 | 0.2140 | 25 | 2.4667 | | 1.9406 | 0.4280 | 50 | 2.5449 | | 1.9175 | 0.6421 | 75 | 2.5669 | | 1.8659 | 0.8561 | 100 | 2.7958 | | 1.9603 | 1.0685 | 125 | 2.6281 | | 1.8811 | 1.2825 | 150 | 2.5601 | | 1.8955 | 1.4965 | 175 | 2.5833 | | 1.8982 | 1.7105 | 200 | 2.6373 | | 1.825 | 1.9246 | 225 | 2.6426 | | 1.88 | 2.1370 | 250 | 2.8641 | | 1.851 | 2.3510 | 275 | 2.6415 | | 1.8619 | 2.5650 | 300 | 2.5749 | | 1.8365 | 2.7790 | 325 | 2.6245 | | 1.8783 | 2.9930 | 350 | 2.5929 | | 1.8693 | 3.2055 | 375 | 2.5986 | | 1.8605 | 3.4195 | 400 | 2.6601 | | 1.8759 | 3.6335 | 425 | 2.5904 | | 1.8731 | 3.8475 | 450 | 2.6054 | | 1.8536 | 4.0599 | 475 | 2.6441 | | 1.8509 | 4.2739 | 500 | 2.6678 | | 1.8609 | 4.4880 | 525 | 2.6946 | | 1.8478 | 4.7020 | 550 | 2.6386 | | 1.8492 | 4.9160 | 575 | 2.6799 | | 1.8549 | 5.1284 | 600 | 2.6355 | | 1.88 | 5.3424 | 625 | 2.7021 | | 1.8569 | 5.5564 | 650 | 2.6380 | | 1.862 | 5.7705 | 675 | 2.6349 | | 1.8486 | 5.9845 | 700 | 2.6843 | | 1.8503 | 6.1969 | 725 | 2.6926 | | 1.8503 | 6.4109 | 750 | 2.6962 | | 1.84 | 6.6249 | 775 | 2.6286 | | 1.8466 | 6.8390 | 800 | 2.6278 | | 1.8584 | 7.0514 | 825 | 2.6274 | | 1.8633 | 7.2654 | 850 | 2.6308 | | 1.8744 | 7.4794 | 875 | 2.6365 | | 1.8522 | 7.6934 | 900 | 2.6514 | | 1.8578 | 7.9074 | 925 | 2.6701 | | 1.8661 | 8.1199 | 950 | 2.6817 | | 1.8301 | 8.3339 | 975 | 2.6813 | | 1.8499 | 8.5479 | 1000 | 2.6841 | | 1.8484 | 8.7619 | 1025 | 2.6832 | | 1.8815 | 8.9759 | 1050 | 2.6814 | | 1.8082 | 9.1883 | 1075 | 2.6836 | | 1.8302 | 9.4024 | 1100 | 2.6839 | | 1.8822 | 9.6164 | 1125 | 2.6824 | | 1.8648 | 9.8304 | 1150 | 2.6822 | ### Framework versions - Transformers 4.56.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.0