--- license: mit datasets: - SWE-Gym/SWE-Gym language: - en base_model: all-hands/openhands-lm-32b-v0.1 pipeline_tag: text-generation tags: - agent - coding - mlx - mlx-my-repo --- # alexgusevski/openhands-lm-32b-v0.1-mlx-8Bit The Model [alexgusevski/openhands-lm-32b-v0.1-mlx-8Bit](https://huggingface.co/alexgusevski/openhands-lm-32b-v0.1-mlx-8Bit) was converted to MLX format from [all-hands/openhands-lm-32b-v0.1](https://huggingface.co/all-hands/openhands-lm-32b-v0.1) using mlx-lm version **0.22.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("alexgusevski/openhands-lm-32b-v0.1-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```