File size: 1,602 Bytes
0510cb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
base_model: Qwen/Qwen2.5-VL-3B-Instruct
tags:
- reward-model
- rfm
- vision-language
- multimodal
library_name: transformers
---

# aliangdw/rfm_prefprog_v3

This is a Reward Function Model (RFM) for vision-language preference learning and similarity assessment.

## Model Details

- **Base Model**: Qwen/Qwen2.5-VL-3B-Instruct
- **Model Type**: qwen2_5_vl
- **Architecture**: RFMModel
- **Task**: Vision-Language Reward Modeling
- **Training Method**: FSDP (Fully Sharded Data Parallel)

## Usage

```python
from transformers import AutoProcessor, AutoModel
import torch

# Load model and processor
processor = AutoProcessor.from_pretrained("aliangdw/rfm_prefprog_v3", trust_remote_code=True)
model = AutoModel.from_pretrained("aliangdw/rfm_prefprog_v3", trust_remote_code=True)

# Example usage for preference scoring
# inputs = processor(images=images, text=text, return_tensors="pt")
# outputs = model(**inputs, sample_type="preference")
```

## Model Capabilities

This RFM model can perform:

1. **Preference Prediction**: Given two trajectories A and B, predict which one is preferred
2. **Similarity Assessment**: Evaluate how similar a trajectory is to a reference
3. **Progress Estimation**: Estimate task completion progress

## Training

The model was trained using:
- FSDP for distributed training
- Mixed precision (bfloat16)
- Custom loss functions for preference and similarity learning

## Files

This repository contains:
- Model weights in SafeTensors format
- Configuration files
- Tokenizer/Processor files

## Citation

If you use this model, please cite: