File size: 8,130 Bytes
ddfa14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright 2025 PKU-Alignment Team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Command line interface for interacting with a multi-modal model."""


import argparse
import os
from openai import OpenAI
import gradio as gr
import base64
import json
import random
random.seed(42)

CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))


SYSTEM_PROMPT = "你是一个具有帮助性的人工智能助手,你能够回答用户的问题,并且能够根据用户的问题提供帮助。你是由北大对齐小组(PKU-Alignment)开发的智能助手 Align-DS-V 基于DeepSeek-R1模型训练。"

openai_api_key = "pku"
openai_api_base = "http://0.0.0.0:8231/v1"

# NOTE replace with your own model path
model = ''
def encode_base64_content_from_local_file(content_url: str) -> str:
    """Encode a content retrieved from a local file to base64 format."""

    with open(content_url, 'rb') as file:
        result = base64.b64encode(file.read()).decode('utf-8')

    return result


IMAGE_EXAMPLES = [
    {
        'files': [
            os.path.join(CURRENT_DIR, 'examples/PKU.jpg'),
            os.path.join(CURRENT_DIR, 'examples/logo.jpg')
        ],
        'text': '比较这两张图片的异同',
    },
    {
        'files': [
            os.path.join(CURRENT_DIR, 'examples/boya.jpg'),
            os.path.join(CURRENT_DIR, 'examples/logo.jpg')
        ],
        'text': '这些图片有什么共同主题?',
    },
]

AUDIO_EXAMPLES = [
    {
        'files': [os.path.join(CURRENT_DIR, 'examples/drum.wav')],
        'text': 'What is the emotion of this drumbeat like?',
    },
    {
        'files': [os.path.join(CURRENT_DIR, 'examples/laugh.wav')],
        'text': 'Is this laughter evil, and why?',
    },
    {
        'files': [os.path.join(CURRENT_DIR, 'examples/scream.wav')],
        'text': 'What is the main event of this scream?',
    },
]

VIDEO_EXAMPLES = [
    {'files': [os.path.join(CURRENT_DIR, 'examples/baby.mp4')], 'text': 'What is the video about?'},
]

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

def text_conversation(text: str, role: str = 'user'):
    return [{'role': role, 'content': text}]

def image_conversation(image_base64_list: list, text: str = None):
    content = []
    for image_base64 in image_base64_list:
        content.append({
            'type': 'image_url',
            # 'image_url':{'url':1}
            'image_url': {'url': f"data:image/jpeg;base64,{image_base64}"}
        })
    content.append({'type': 'text', 'text': text})
    
    return [{'role': 'user', 'content': content}]

def question_answering(message: dict, history: list, file):
    # NOTE 2: use gradio upload multiple images, and update below data preprocess function accordingly
    # print('history:',history)
    # print('file:',file)
    message['files'] = file if file is not None else []
    # print('message:',message)
    multi_modal_info = []
    conversation = text_conversation(SYSTEM_PROMPT)
    # NOTE 处理history 
    for i, past_message in enumerate(history):
        if isinstance(past_message, str):
            conversation.extend(text_conversation(past_message))
        elif isinstance(past_message, dict):
            if past_message['role'] == 'user':
                if isinstance(past_message['content'], str):
                    text = past_message['content']
                    if i + 1 < len(history) and isinstance(history[i + 1]['content'], tuple):
                        raw_images = history[i + 1]['content']
                        image_base64_list = []
                        if isinstance(raw_images, str):
                            image_base64 = encode_base64_content_from_local_file(raw_images)
                            image_base64_list.append(image_base64)
                        elif isinstance(raw_images, tuple):
                            # NOTE multiple image processing one by one 
                            for image in raw_images:
                                image_base64 = encode_base64_content_from_local_file(image)
                                image_base64_list.append(image_base64)
                        multi_modal_info.extend(image_base64_list)
                        conversation.extend(image_conversation(image_base64_list, text))
                    elif i - 1 >= 0 and isinstance(history[i - 1]['content'], tuple):
                        raw_images = history[i - 1]['content']
                        image_base64_list = []
                        if isinstance(raw_images, str):
                            image_base64 = encode_base64_content_from_local_file(raw_images)
                            image_base64_list.append(image_base64)
                        elif isinstance(raw_images, tuple):
                            # NOTE 逐步处理上传的图片,解码为 base64
                            for image in raw_images:
                                image_base64 = encode_base64_content_from_local_file(image)
                                image_base64_list.append(image_base64)
                        multi_modal_info.extend(image_base64_list)
                        conversation.extend(image_conversation(image_base64_list, text))
                    else:
                        conversation.extend(text_conversation(past_message['content'], 'user'))
            elif past_message['role'] == 'assistant':
                conversation.extend(text_conversation(past_message['content'], 'assistant'))

    if len(message['files']) == 0:
        current_question = message['text']
        conversation.extend(text_conversation(current_question))
    else:
        current_question = message['text']
        current_multi_modal_info = message['files']
        image_base64_list = []
        for file in current_multi_modal_info:
            image_base64 = encode_base64_content_from_local_file(file)
            image_base64_list.append(image_base64)
        multi_modal_info.extend(image_base64_list)
        conversation.extend(image_conversation(image_base64_list, current_question))
    # print(f'Conversation:',conversation)
    # NOTE 1: openai client also should support multiple upload 
    outputs = client.chat.completions.create(
        model=model,
        stream=False,
        messages=conversation,
    )

    # Extract the predicted answer
    answer = outputs.choices[0].message.content
    if "**Final Answer**" in answer:
        reasoning_content, final_answer = answer.split("**Final Answer**", 1)
        if len(reasoning_content) > 5:
            answer = f"""🤔 思考过程:\n```bash{reasoning_content}\n```\n✨ 最终答案:\n{final_answer}"""
    else:
        answer = answer

    return answer

if __name__ == '__main__':
    # Define the Gradio interface
    parser = argparse.ArgumentParser()
    args = parser.parse_args()
    examples = IMAGE_EXAMPLES

    with gr.Blocks() as demo:
        # upload_button = gr.UploadButton(render=False)
        
        multiple_files = gr.File(file_count="multiple")
        gr.ChatInterface(
            fn=question_answering,
            additional_inputs = [multiple_files],
            type='messages',
            multimodal=True,
            title='Align-DS-V Reasoning CLI',
            description='Better life with Stronger Align-DS-V.',
            # examples=examples,
            theme=gr.themes.Ocean(
                text_size='lg',
                spacing_size='lg',
                radius_size='lg',
            ),
        )

    demo.launch(share=True)