File size: 4,810 Bytes
58bb377 7b6db41 58bb377 7b6db41 58bb377 306748c 58bb377 306748c 58bb377 7b6db41 58bb377 7b6db41 58bb377 7b6db41 58bb377 306748c 7b6db41 306748c 7b6db41 58bb377 7b6db41 306748c 58bb377 7b6db41 306748c 58bb377 306748c 58bb377 306748c 58bb377 306748c 58bb377 306748c 7b6db41 58bb377 306748c 7b6db41 58bb377 7b6db41 58bb377 7b6db41 58bb377 7b6db41 58bb377 7b6db41 58bb377 7b6db41 58bb377 7b6db41 58bb377 7b6db41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
---
base_model: jinaai/jina-embeddings-v3
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
library_name: model2vec
license: mit
model_name: onnx
tags:
- embeddings
- static-embeddings
- sentence-transformers
---
# alikia2x/jina-embedding-v3-m2v-1024
This [Model2Vec](https://github.com/MinishLab/model2vec) model is a distilled version of the
[jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) Sentence Transformer.
It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU.
It is designed for applications where computational resources are limited or where real-time performance is critical.
## Installation
Install model2vec using pip:
```
pip install model2vec
```
## Usage
### Via `model2vec`
Load this model using the `from_pretrained` method:
```python
from model2vec import StaticModel
# Load a pretrained Model2Vec model
model = StaticModel.from_pretrained("alikia2x/jina-embedding-v3-m2v-1024")
# Compute text embeddings
embeddings = model.encode(["Hello"])
```
### Via `sentence-transformers`
```bash
pip install sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("alikia2x/jina-embedding-v3-m2v-1024")
# embedding:
# array([[ 1.1825741e-01, -1.2899181e-02, -1.0492010e-01, ...,
# 1.1131058e-03, 8.2779792e-04, -7.6874542e-08]],
# shape=(1, 1024), dtype=float32)
embeddings = model.encode(["Hello"])
```
### Via ONNX
```bash
pip install onnxruntime transformers
```
You need to download `onnx/model.onnx` in this repository first.
```python
import onnxruntime
from transformers import AutoTokenizer
import numpy as np
tokenizer_model = "alikia2x/jina-embedding-v3-m2v-1024"
onnx_embedding_path = "path/to/your/model.onnx"
texts = ["Hello"]
tokenizer = AutoTokenizer.from_pretrained(tokenizer_model)
session = onnxruntime.InferenceSession(onnx_embedding_path)
inputs = tokenizer(texts, add_special_tokens=False, return_tensors="np")
input_ids = inputs["input_ids"]
lengths = [len(seq) for seq in input_ids[:-1]]
offsets = [0] + np.cumsum(lengths).tolist()
flattened_input_ids = input_ids.flatten().astype(np.int64)
inputs = {
"input_ids": flattened_input_ids,
"offsets": np.array(offsets, dtype=np.int64),
}
outputs = session.run(None, inputs)
embeddings = outputs[0]
embeddings = embeddings.flatten()
# [ 1.1825741e-01 -1.2899181e-02 -1.0492010e-01 ... 1.1131058e-03
# 8.2779792e-04 -7.6874542e-08]
print(embeddings)
```
Note: A quantized (INT8) version of this model is also available, offering reduced memory usage with minimal performance impact.
Simply replace `onnx/model.onnx` with the `onnx/model_INT8.onnx` file.
Our testing shows less than a 1% drop in the F1 score on a real down-stream task.
## How it works
Model2vec creates a small, fast, and powerful model that outperforms other static embedding models by a large margin on all tasks we could find, while being much faster to create than traditional static embedding models such as GloVe. Best of all, you don't need any data to distill a model using Model2Vec.
It works by passing a vocabulary through a sentence transformer model, then reducing the dimensionality of the resulting embeddings using PCA, and finally weighting the embeddings using zipf weighting. During inference, we simply take the mean of all token embeddings occurring in a sentence.
## Additional Resources
- [All Model2Vec models on the hub](https://huggingface.co/models?library=model2vec)
- [Model2Vec Repo](https://github.com/MinishLab/model2vec)
- [Model2Vec Results](https://github.com/MinishLab/model2vec?tab=readme-ov-file#results)
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
## Library Authors
Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
## Citation
Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
```
@software{minishlab2024model2vec,
authors = {Stephan Tulkens, Thomas van Dongen},
title = {Model2Vec: Turn any Sentence Transformer into a Small Fast Model},
year = {2024},
url = {https://github.com/MinishLab/model2vec},
}
``` |