--- license: apache-2.0 tags: - non-verbal-vocalization - audio-classification - baby-crying model-index: - name: voc2vec results: [] language: - en pipeline_tag: audio-classification library_name: transformers --- # voc2vec voc2vec is a foundation model specifically designed for non-verbal human data. We employed a collection of 10 datasets covering around 125 hours of non-verbal audio and pre-trained a [Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/)-like model. ## Model description Voc2vec is built upon the wav2vec 2.0 framework and follows its pre-training setup. The pre-training datasets include: AudioSet (vocalization), FreeSound (babies), HumanVoiceDataset, NNIME, NonSpeech7K, ReCANVo, SingingDatabase, TUT (babies), VocalSketch, VocalSound. ## Task and datasets description We evaluate voc2vec on six datasets: ASVP-ESD, ASPV-ESD (babies), CNVVE, NonVerbal Vocalization Dataset, Donate a Cry, VIVAE. The following table reports the average performance in terms of Unweighted Average Recall (UAR) and F1 Macro across the six datasets described above. | Model | Architecture | Pre-training DS | UAR | F1 Macro | |--------|-------------|-------------|-----------|-----------| | **voc2vec** | wav2vec 2.0 | Voc125 | .612±.212 | .580±.230 | | **voc2vec-as-pt** | wav2vec 2.0 | AudioSet + Voc125 | .603±.183 | .574±.194 | | **voc2vec-ls-pt** | wav2vec 2.0 | LibriSpeech + Voc125 | .661±.206 | .636±.223 | | **voc2vec-hubert-ls-pt** | HuBERT | LibriSpeech + Voc125 | **.696±.189** | **.678±.200** | ## Available Models | Model | Description | Link | |--------|-------------|------| | **voc2vec** | Pre-trained model on **125 hours of non-verbal audio**. | [🔗 Model](https://huggingface.co/alkiskoudounas/voc2vec) | | **voc2vec-as-pt** | Continues pre-training from a wav2vec2-like model that was **initially trained on the AudioSet dataset**. | [🔗 Model](https://huggingface.co/alkiskoudounas/voc2vec-as-pt) | | **voc2vec-ls-pt** | Continues pre-training from a wav2vec2-like model that was **initially trained on the LibriSpeech dataset**. | [🔗 Model](https://huggingface.co/alkiskoudounas/voc2vec-ls-pt) | | **voc2vec-hubert-ls-pt** | Continues pre-training from a hubert-like model that was **initially trained on the LibriSpeech dataset**. | [🔗 Model](https://huggingface.co/alkiskoudounas/voc2vec-hubert-ls-pt) | ## Usage examples You can use the model directly in the following manner: ```python import torch import librosa from transformers import AutoModelForAudioClassification, AutoFeatureExtractor ## Load an audio file audio_array, sr = librosa.load("path_to_audio.wav", sr=16000) ## Load model and feature extractor model = AutoModelForAudioClassification.from_pretrained("alkiskoudounas/voc2vec") feature_extractor = AutoFeatureExtractor.from_pretrained("alkiskoudounas/voc2vec") ## Extract features inputs = feature_extractor(audio_array.squeeze(), sampling_rate=feature_extractor.sampling_rate, padding=True, return_tensors="pt") ## Compute logits logits = model(**inputs).logits ``` ## BibTeX entry and citation info ```bibtex @INPROCEEDINGS{koudounas2025icassp, author={Koudounas, Alkis and La Quatra, Moreno and Siniscalchi, Sabato Marco and Baralis, Elena}, booktitle={ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, title={voc2vec: A Foundation Model for Non-Verbal Vocalization}, year={2025}, volume={}, number={}, pages={1-5}, keywords={Pediatrics;Accuracy;Foundation models;Benchmark testing;Signal processing;Data models;Acoustics;Speech processing;Nonverbal vocalization;Representation Learning;Self-Supervised Models;Pre-trained Models}, doi={10.1109/ICASSP49660.2025.10890672}} ```