Updated README
Browse files
README.md
CHANGED
@@ -25,6 +25,11 @@ The dataset is available on [HuggingFace Hub](https://huggingface.co/datasets/FB
|
|
25 |
|
26 |
This is the [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model fine-tuned on the de-DE language.
|
27 |
|
|
|
|
|
|
|
|
|
|
|
28 |
## Usage
|
29 |
|
30 |
You can use the model directly in the following manner:
|
@@ -47,3 +52,20 @@ inputs = feature_extractor(audio_array.squeeze(), sampling_rate=feature_extracto
|
|
47 |
## Compute logits
|
48 |
logits = model(**inputs).logits
|
49 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
This is the [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) model fine-tuned on the de-DE language.
|
27 |
|
28 |
+
It achieves the following results on the test set:
|
29 |
+
|
30 |
+
- Accuracy: 0.681
|
31 |
+
- F1: 0.584
|
32 |
+
|
33 |
## Usage
|
34 |
|
35 |
You can use the model directly in the following manner:
|
|
|
52 |
## Compute logits
|
53 |
logits = model(**inputs).logits
|
54 |
```
|
55 |
+
|
56 |
+
## Framework versions
|
57 |
+
|
58 |
+
- Datasets 3.2.0
|
59 |
+
- Pytorch 2.1.2
|
60 |
+
- Tokenizers 0.20.3
|
61 |
+
- Transformers 4.45.2
|
62 |
+
|
63 |
+
## BibTeX entry and citation info
|
64 |
+
|
65 |
+
```bibtex
|
66 |
+
@inproceedings{koudounas2025unlearning,
|
67 |
+
title={"Alexa, can you forget me?" Machine Unlearning Benchmark in Spoken Language Understanding},
|
68 |
+
author={Koudounas, Alkis and Savelli, Claudio and Giobergia, Flavio and Baralis, Elena},
|
69 |
+
booktitle={Proc. Interspeech 2025},
|
70 |
+
year={2025},
|
71 |
+
}
|