Text Classification
Transformers
PyTorch
English
llama
text-generation-inference
natolambert commited on
Commit
c3bf353
·
verified ·
1 Parent(s): 0fc8e20

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -176
README.md CHANGED
@@ -11,201 +11,60 @@ base_model:
11
  library_name: transformers
12
  ---
13
 
14
- # Model Card for allenai/open_instruct_dev
15
 
16
  <!-- Provide a quick summary of what the model is/does. -->
17
 
 
 
 
 
18
 
19
 
20
  ## Model Details
21
 
22
- ### Model Description
 
 
 
23
 
 
 
 
 
24
  <!-- Provide a longer summary of what this model is. -->
 
25
  | Revision | Training Data | Learning Rate | Num Epochs | RewardBench 2 Score | Factuality | Precise IF | Math | Safety | Focus | Ties |
26
  |----------|---------------|---------------|------------|---------------------|------------|------------|------|--------|-------|------|
27
  | main | Combined | 3e-6 | 1 | 76.1 | 81.3 | 41.9 | 69.9 | 88.4 | 86.5 | 88.3 |
28
  | 1 | Combined | 3e-6 | 1 | 75.7 | 81.7 | 41.2 | 70.5 | 87.3 | 85.5 | 88.1 |
29
  | 2 | Combined | 1e-6 | 1 | 73.1 | 74.7 | 37.5 | 69.4 | 86.2 | 80.6 | 89.9 |
30
 
31
-
32
- - **Developed by:** [More Information Needed]
33
- - **Funded by [optional]:** [More Information Needed]
34
- - **Shared by [optional]:** [More Information Needed]
35
- - **Model type:** [More Information Needed]
36
  - **Language(s) (NLP):** en
37
- - **License:** [More Information Needed]
38
- - **Finetuned from model [optional]:** [More Information Needed]
39
-
40
- ### Model Sources [optional]
41
-
42
- <!-- Provide the basic links for the model. -->
43
-
44
- - **Repository:** [More Information Needed]
45
- - **Paper [optional]:** [More Information Needed]
46
- - **Demo [optional]:** [More Information Needed]
47
-
48
- ## Uses
49
-
50
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
51
-
52
- ### Direct Use
53
-
54
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
55
-
56
- [More Information Needed]
57
-
58
- ### Downstream Use [optional]
59
-
60
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
61
-
62
- [More Information Needed]
63
-
64
- ### Out-of-Scope Use
65
-
66
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
67
-
68
- [More Information Needed]
69
-
70
- ## Bias, Risks, and Limitations
71
-
72
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
73
-
74
- [More Information Needed]
75
-
76
- ### Recommendations
77
-
78
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
79
-
80
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
81
-
82
- ## How to Get Started with the Model
83
-
84
- Use the code below to get started with the model.
85
-
86
- [More Information Needed]
87
-
88
- ## Training Details
89
-
90
- ### Training Data
91
-
92
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
93
-
94
- [More Information Needed]
95
-
96
- ### Training Procedure
97
-
98
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
99
-
100
- #### Preprocessing [optional]
101
-
102
- [More Information Needed]
103
-
104
-
105
- #### Training Hyperparameters
106
-
107
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
108
-
109
- #### Speeds, Sizes, Times [optional]
110
-
111
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
112
-
113
- [More Information Needed]
114
-
115
- ## Evaluation
116
-
117
- <!-- This section describes the evaluation protocols and provides the results. -->
118
-
119
- ### Testing Data, Factors & Metrics
120
-
121
- #### Testing Data
122
-
123
- <!-- This should link to a Dataset Card if possible. -->
124
-
125
- [More Information Needed]
126
-
127
- #### Factors
128
-
129
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
130
-
131
- [More Information Needed]
132
-
133
- #### Metrics
134
-
135
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
136
-
137
- [More Information Needed]
138
-
139
- ### Results
140
-
141
- [More Information Needed]
142
-
143
- #### Summary
144
-
145
-
146
-
147
- ## Model Examination [optional]
148
-
149
- <!-- Relevant interpretability work for the model goes here -->
150
-
151
- [More Information Needed]
152
-
153
- ## Environmental Impact
154
-
155
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
156
-
157
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
158
-
159
- - **Hardware Type:** [More Information Needed]
160
- - **Hours used:** [More Information Needed]
161
- - **Cloud Provider:** [More Information Needed]
162
- - **Compute Region:** [More Information Needed]
163
- - **Carbon Emitted:** [More Information Needed]
164
-
165
- ## Technical Specifications [optional]
166
-
167
- ### Model Architecture and Objective
168
-
169
- [More Information Needed]
170
-
171
- ### Compute Infrastructure
172
-
173
- [More Information Needed]
174
-
175
- #### Hardware
176
-
177
- [More Information Needed]
178
-
179
- #### Software
180
-
181
- [More Information Needed]
182
-
183
- ## Citation [optional]
184
-
185
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
186
-
187
- **BibTeX:**
188
-
189
- [More Information Needed]
190
-
191
- **APA:**
192
-
193
- [More Information Needed]
194
-
195
- ## Glossary [optional]
196
-
197
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
198
-
199
- [More Information Needed]
200
 
201
- ## More Information [optional]
202
 
203
- [More Information Needed]
 
 
 
204
 
205
- ## Model Card Authors [optional]
 
206
 
207
- [More Information Needed]
208
 
209
- ## Model Card Contact
 
 
 
 
 
 
 
210
 
211
- [More Information Needed]
 
11
  library_name: transformers
12
  ---
13
 
14
+ # Model Card for {{MODEL_NAME_HERE}}
15
 
16
  <!-- Provide a quick summary of what the model is/does. -->
17
 
18
+ {{MODEL_NAME_HERE}} is one of 6 sets of reward models (RMs) released with Reward Bench 2.
19
+ We have released a large set of 70 total reward model checkpoints that we used to develop the benchmark and correlate it with downstream PPO / Best-of-N performance.
20
+
21
+ [Models](https://huggingface.co/collections/allenai/reward-bench-2-683d2612a4b3e38a3e53bb51) | [Code](https://github.com/allenai/reward-bench) | [Eval. Dataset v2](https://huggingface.co/datasets/allenai/reward-bench-2) | [Results v2](https://huggingface.co/datasets/allenai/reward-bench-2-results) | [Paper](https://github.com/allenai/reward-bench/blob/main/paper-v2.pdf)
22
 
23
 
24
  ## Model Details
25
 
26
+ The model is a standard classifier, `AutoModelForSequenceClassification` within the HuggingFace ecosystem, trained on binary preference data.
27
+ For each model in this batch the main revision is the best model we obtained for that base model, and we include all other training data and hyperparamter combinations in the revisions for further research.
28
+
29
+ To load a model from a revision, modify the following:
30
 
31
+ ```python
32
+ from transformers import AutoModelForSequenceClassification
33
+ rm = AutoModelForSequenceClassification("allenai/Llama-3.1-70B-Instruct-RM-RB2", revision="2")
34
+ ```
35
  <!-- Provide a longer summary of what this model is. -->
36
+
37
  | Revision | Training Data | Learning Rate | Num Epochs | RewardBench 2 Score | Factuality | Precise IF | Math | Safety | Focus | Ties |
38
  |----------|---------------|---------------|------------|---------------------|------------|------------|------|--------|-------|------|
39
  | main | Combined | 3e-6 | 1 | 76.1 | 81.3 | 41.9 | 69.9 | 88.4 | 86.5 | 88.3 |
40
  | 1 | Combined | 3e-6 | 1 | 75.7 | 81.7 | 41.2 | 70.5 | 87.3 | 85.5 | 88.1 |
41
  | 2 | Combined | 1e-6 | 1 | 73.1 | 74.7 | 37.5 | 69.4 | 86.2 | 80.6 | 89.9 |
42
 
43
+ - **Developed by:** Allen Institute for AI
44
+ - **Training code:** https://github.com/allenai/open-instruct
 
 
 
45
  - **Language(s) (NLP):** en
46
+ - **License:** Llama 3.1 Community License Agreement
47
+ - **Finetuned from model [optional]:** {{TODO_BASE_MODEL_HERE}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ ## License
50
 
51
+ All Llama 3.1 Tülu3 models are released under Meta's [Llama 3.1 Community License Agreement](https://www.llama.com/llama3_1/license/).
52
+ Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc.
53
+ Tülu3 is intended for research and educational use.
54
+ For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
55
 
56
+ The models have been fine-tuned using a dataset mix with outputs generated from third party models and are subject to additional terms:
57
+ [Gemma Terms of Use](https://ai.google.dev/gemma/terms) and [Qwen License Agreement](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE) (models were improved using Qwen 2.5).
58
 
59
+ ## Citation
60
 
61
+ ```
62
+ @misc{RewardBench2,
63
+ title={RewardBench 2: Advancing Reward Model Evaluation},
64
+ author={Malik, Saumya and Pyatkin, Valentina and Land, Sander and Morrison, Jacob and Smith, Noah A. and Hajishirzi, Hannaneh and Lambert, Nathan},
65
+ year={2025},
66
+ howpublished={\url{https://huggingface.co/spaces/allenai/reward-bench}},
67
+ }
68
+ ```
69
 
70
+ Model card contact: `saumyam at allenai dot org`