Upload image_preprocessing_molmo.py with huggingface_hub
Browse files- image_preprocessing_molmo.py +38 -59
image_preprocessing_molmo.py
CHANGED
|
@@ -15,36 +15,13 @@ from transformers.image_utils import (
|
|
| 15 |
is_valid_image,
|
| 16 |
)
|
| 17 |
from transformers.processing_utils import ImagesKwargs
|
| 18 |
-
from transformers.image_processing_utils import BaseImageProcessor
|
| 19 |
-
from transformers.utils import
|
| 20 |
|
| 21 |
|
| 22 |
logger = logging.get_logger(__name__)
|
| 23 |
|
| 24 |
|
| 25 |
-
def make_batched_images(images) -> List[List[ImageInput]]:
|
| 26 |
-
"""
|
| 27 |
-
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
| 28 |
-
|
| 29 |
-
Args:
|
| 30 |
-
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
| 31 |
-
The input image.
|
| 32 |
-
|
| 33 |
-
Returns:
|
| 34 |
-
list: A list of images.
|
| 35 |
-
"""
|
| 36 |
-
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
| 37 |
-
return [img for img_list in images for img in img_list]
|
| 38 |
-
|
| 39 |
-
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
| 40 |
-
return images
|
| 41 |
-
|
| 42 |
-
elif is_valid_image(images):
|
| 43 |
-
return [images]
|
| 44 |
-
|
| 45 |
-
raise ValueError(f"Could not make batched images from {images}")
|
| 46 |
-
|
| 47 |
-
|
| 48 |
def pad_to_bounding_box(
|
| 49 |
image, offset_height, offset_width, target_height,
|
| 50 |
target_width, value=0
|
|
@@ -68,7 +45,7 @@ def normalize_image(image, offset, scale):
|
|
| 68 |
def resize_and_pad(
|
| 69 |
image,
|
| 70 |
desired_output_size,
|
| 71 |
-
resize_method=
|
| 72 |
pad_value=0,
|
| 73 |
normalize=True,
|
| 74 |
image_mean=OPENAI_CLIP_MEAN,
|
|
@@ -85,26 +62,29 @@ def resize_and_pad(
|
|
| 85 |
scaled_height = int(np.array(height, np.float32) * image_scale)
|
| 86 |
scaled_width = int(np.array(width, np.float32) * image_scale)
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
image
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
top_pad = (desired_height - scaled_height) // 2
|
| 110 |
left_pad = (desired_width - scaled_width) // 2
|
|
@@ -201,18 +181,6 @@ class MolmoImageProcessor(BaseImageProcessor):
|
|
| 201 |
image_token_length_h: Optional[int] = None,
|
| 202 |
image_patch_size: Optional[int] = None,
|
| 203 |
):
|
| 204 |
-
"""Preprocesses an image
|
| 205 |
-
|
| 206 |
-
Returns:
|
| 207 |
-
crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
|
| 208 |
-
change between images but the other dimension are fixed
|
| 209 |
-
tokens: (n_tokens,) int32 tokens, pad tokens indicating where to insert the
|
| 210 |
-
patch features, might include other special tokens as well
|
| 211 |
-
patch_ordering: (n_crops, n_tokens_per_crop) order image features should be inserted
|
| 212 |
-
into the `tokens`, negative values indicates patches features to exclude
|
| 213 |
-
padding_mask: (n_crops, n_patches) what percent of each crop is padding, be None
|
| 214 |
-
if the image mask is not being used.
|
| 215 |
-
"""
|
| 216 |
if isinstance(base_image_input_size, int):
|
| 217 |
base_image_input_size = (base_image_input_size, base_image_input_size)
|
| 218 |
|
|
@@ -438,7 +406,18 @@ class MolmoImageProcessor(BaseImageProcessor):
|
|
| 438 |
image_patch_size: Optional[int] = None,
|
| 439 |
**kwargs,
|
| 440 |
):
|
| 441 |
-
"""Preprocesses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
|
| 443 |
max_crops = max_crops or self.max_crops
|
| 444 |
overlap_margins = overlap_margins or self.overlap_margins
|
|
|
|
| 15 |
is_valid_image,
|
| 16 |
)
|
| 17 |
from transformers.processing_utils import ImagesKwargs
|
| 18 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
|
| 21 |
|
| 22 |
logger = logging.get_logger(__name__)
|
| 23 |
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def pad_to_bounding_box(
|
| 26 |
image, offset_height, offset_width, target_height,
|
| 27 |
target_width, value=0
|
|
|
|
| 45 |
def resize_and_pad(
|
| 46 |
image,
|
| 47 |
desired_output_size,
|
| 48 |
+
resize_method="torch-bilinear",
|
| 49 |
pad_value=0,
|
| 50 |
normalize=True,
|
| 51 |
image_mean=OPENAI_CLIP_MEAN,
|
|
|
|
| 62 |
scaled_height = int(np.array(height, np.float32) * image_scale)
|
| 63 |
scaled_width = int(np.array(width, np.float32) * image_scale)
|
| 64 |
|
| 65 |
+
if resize_method == "tensorflow":
|
| 66 |
+
# This how the original training code did resizing, it can produce slightly different
|
| 67 |
+
# results then using torch resize so we keep it just in case
|
| 68 |
+
import tensorflow as tf
|
| 69 |
+
image = tf.image.convert_image_dtype(tf.constant(image), dtype=tf.float32)
|
| 70 |
+
image = tf.image.resize(
|
| 71 |
+
image,
|
| 72 |
+
[scaled_height, scaled_width],
|
| 73 |
+
method=tf.image.ResizeMethod.BILINEAR,
|
| 74 |
+
antialias=True,
|
| 75 |
+
)
|
| 76 |
+
image = tf.clip_by_value(image, 0.0, 1.0)
|
| 77 |
+
image = image.numpy()
|
| 78 |
+
elif resize_method == "torch-bilinear":
|
| 79 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
| 80 |
+
image = convert_image_dtype(image) # resize in float32 to match the training code
|
| 81 |
+
image = torchvision.transforms.Resize(
|
| 82 |
+
[scaled_height, scaled_width], InterpolationMode.BILINEAR, antialias=True
|
| 83 |
+
)(image)
|
| 84 |
+
image = torch.clip(image, 0.0, 1.0)
|
| 85 |
+
image = torch.permute(image, [1, 2, 0]).numpy()
|
| 86 |
+
else:
|
| 87 |
+
raise NotImplementedError(resize_method)
|
| 88 |
|
| 89 |
top_pad = (desired_height - scaled_height) // 2
|
| 90 |
left_pad = (desired_width - scaled_width) // 2
|
|
|
|
| 181 |
image_token_length_h: Optional[int] = None,
|
| 182 |
image_patch_size: Optional[int] = None,
|
| 183 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
if isinstance(base_image_input_size, int):
|
| 185 |
base_image_input_size = (base_image_input_size, base_image_input_size)
|
| 186 |
|
|
|
|
| 406 |
image_patch_size: Optional[int] = None,
|
| 407 |
**kwargs,
|
| 408 |
):
|
| 409 |
+
"""Preprocesses an image
|
| 410 |
+
|
| 411 |
+
Returns:
|
| 412 |
+
crops: (n_crops, n_patches, patch_dim) individual crops, `n_crops` might
|
| 413 |
+
change between images but the other dimension are fixed
|
| 414 |
+
tokens: (n_tokens,) int32 tokens, pad tokens indicate where to insert the
|
| 415 |
+
patch features, might include other special tokens as well
|
| 416 |
+
image_idx: (n_crops, n_patches) index in `tokens` to put the patch features from the
|
| 417 |
+
crops after pooling, negative values indicates patches features to exclude
|
| 418 |
+
padding_mask: (n_crops, n_patches) what percent of each crop is padding, can be None
|
| 419 |
+
if the image mask is not being used.
|
| 420 |
+
"""
|
| 421 |
|
| 422 |
max_crops = max_crops or self.max_crops
|
| 423 |
overlap_margins = overlap_margins or self.overlap_margins
|