import math from copy import deepcopy from dataclasses import dataclass from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable import torch from torch import nn from torch.nn import functional as F from transformers.models.auto import AutoModelForCausalLM, AutoModelForImageTextToText from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.generation import GenerationMixin from transformers.generation.configuration_utils import GenerationConfig from transformers.generation.utils import GenerateOutput from transformers.integrations import use_kernel_forward_from_hub from transformers.modeling_attn_mask_utils import AttentionMaskConverter from transformers.modeling_flash_attention_utils import _flash_attention_forward, FlashAttentionKwargs from transformers import GradientCheckpointingLayer from transformers.modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPast, BaseModelOutputWithPooling, CausalLMOutputWithPast, ) from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.processing_utils import Unpack from transformers.utils import ( ModelOutput, can_return_tuple, is_torch_flex_attn_available, logging, add_start_docstrings, add_start_docstrings_to_model_forward, ) from .configuration_molmoact import MolmoActConfig, MolmoActVitConfig, MolmoActAdapterConfig, MolmoActLlmConfig import re import numpy as np from transformers import Qwen2Tokenizer if is_torch_flex_attn_available(): from torch.nn.attention.flex_attention import BlockMask from transformers.integrations.flex_attention import make_flex_block_causal_mask logger = logging.get_logger(__name__) MOLMO_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MolmoActConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ NUM_RE = re.compile(r'[+-]?(?:\d+(?:\.\d+)?|\.\d+)(?:[eE][+-]?\d+)?$') DEPTH_RE = re.compile(r'(.*?)', re.DOTALL) # One-level-nested [...] matcher: outer block that may contain inner [ ... ] lists OUTER_BLOCK_RE = re.compile(r'\[(?:[^\[\]]|\[[^\[\]]*\])+\]') def _is_number(s: str) -> bool: return bool(NUM_RE.match(s)) def _has_non_ascii(s: str) -> bool: return any(ord(ch) > 127 for ch in s) def _to_number(s: str): """Parse string number to int when possible, else float.""" v = float(s) return int(v) if v.is_integer() else v def extract_depth_string(text: str, include_tags: bool = False) -> list[str]: """ Return all occurrences of depth strings. If include_tags=True, each item is '...'; otherwise each item is just the inner '...'. """ matches = list(DEPTH_RE.finditer(text)) if include_tags: return [m.group(0) for m in matches] return [m.group(1) for m in matches] def extract_trace_lists( text: str, point_len: int | None = 2, # e.g., 2 for [x,y], 3 for [x,y,z]; None = any length ≥1 min_points: int = 1 ) -> list[list[list[float]]]: """ Extract *numeric* lists-of-lists like [[140,225],[130,212],...]. Returns a list of traces; each trace is a list of points (lists of numbers). Heuristic: - Find outer [ ... ] blocks that may contain inner lists - Keep blocks where every inner list is fully numeric - Enforce per-point length (point_len) and a minimum number of points (min_points) """ traces: list[list[list[float]]] = [] # Find outer blocks that can contain nested lists for block in OUTER_BLOCK_RE.findall(text): inner_strs = re.findall(r'\[([^\[\]]+)\]', block) # contents of each inner [...] if len(inner_strs) < min_points: continue rows: list[list[float]] = [] ok = True for row in inner_strs: parts = [p.strip().strip('"').strip("'") for p in row.split(',')] if point_len is not None and len(parts) != point_len: ok = False break if not all(_is_number(p) for p in parts): ok = False break rows.append([_to_number(p) for p in parts]) if ok: traces.append(rows) return traces def extract_action_token_lists( text: str, only_len: int | None = None, # e.g., 7 if you expect 7-D actions require_non_ascii: bool = True # set False if your tokens can be pure ASCII ) -> list[list[str]]: """ Extract all [ ... ] groups split by commas, discard numeric lists, and return token lists (quotes stripped, whitespace trimmed). """ lists = [] # Match NON-nested bracketed groups: [ ... ] without inner [ or ] for inner in re.findall(r'\[([^\[\]]+)\]', text): parts = [p.strip().strip('"').strip("'") for p in inner.split(',')] if only_len is not None and len(parts) != only_len: continue # If *all* items are numeric -> not action tokens (like coordinates) if all(_is_number(p) for p in parts): continue # Optionally require at least one non-ASCII char across tokens (helps exclude plain words/numbers) if require_non_ascii and not any(_has_non_ascii(p) for p in parts): continue lists.append(parts) return lists @dataclass class MolmoActCausalLMOutputWithPast(ModelOutput): """ Base class for MolmoAct causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. """ loss: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None past_key_values: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[torch.FloatTensor] = None @dataclass class MolmoActModelOutputWithPast(BaseModelOutputWithPast): """ Base class for MolmoAct outputs, with hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. image_hidden_states (`torch.FloatTensor`, *optional*): A `torch.FloatTensor` of size `(batch_num_patches, hidden_size)`. image_hidden_states of the model produced by the vision backbone """ image_hidden_states: Optional[torch.FloatTensor] = None logits: Optional[torch.FloatTensor] = None class MolmoActPreTrainedModel(PreTrainedModel): config_class = MolmoActLlmConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MolmoActDecoderLayer", "MolmoActPostNormDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = False _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True _supports_attention_backend = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear,)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, MolmoActEmbedding): module.embedding.data.normal_(mean=0.0, std=std) module.new_embedding.data.normal_(mean=0.0, std=std) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, MolmoActRMSNorm): module.weight.data.fill_(1.0) elif isinstance(module, nn.LayerNorm): module.weight.data.fill_(1.0) if module.bias is not None: module.bias.data.zero_() class ViTMLP(nn.Module): def __init__(self, dim: int, hidden_dim: int, hidden_act: str, device: Union[str, torch.device] = None): super().__init__() self.w1 = nn.Linear(dim, hidden_dim, bias=True, device=device) self.act = ACT2FN[hidden_act] self.w2 = nn.Linear(hidden_dim, dim, bias=True, device=device) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.w2(self.act(self.w1(x))) class ViTMultiHeadDotProductAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_key_value_heads: int, head_dim: int, use_bias: bool = True, input_dim: Optional[int] = None, float32_attention: bool = True, attention_dropout: float = 0.0, residual_dropout: float = 0.0, device: Union[str, torch.device] = None, attn_implementation: str = "eager", ): super().__init__() self.hidden_size = hidden_size self.num_heads = num_heads self.head_dim = head_dim self.num_key_value_heads = num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.attn_implementation = attn_implementation self.is_causal = False input_dim = input_dim or hidden_size self.wq = nn.Linear( input_dim, self.num_heads * self.head_dim, bias=use_bias, device=device, ) self.wk = nn.Linear( input_dim, self.num_key_value_heads * self.head_dim, bias=use_bias, device=device, ) self.wv = nn.Linear( input_dim, self.num_key_value_heads * self.head_dim, bias=use_bias, device=device, ) self.wo = nn.Linear( self.num_heads * self.head_dim, self.hidden_size, ) self.float32_attention = float32_attention self.attention_dropout = attention_dropout self.residual_dropout = nn.Dropout(residual_dropout) def _split_heads(self, hidden_states, num_heads) -> torch.Tensor: return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) def _merge_heads(self, hidden_states) -> torch.Tensor: return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,)) def forward( self, inputs_q: torch.Tensor, inputs_kv: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: if inputs_kv is not None: inputs_k = inputs_kv inputs_v = inputs_kv else: inputs_k = inputs_q inputs_v = inputs_q xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v) xq = self._split_heads(xq, self.num_heads) xk = self._split_heads(xk, self.num_key_value_heads) xv = self._split_heads(xv, self.num_key_value_heads) if self.num_heads != self.num_key_value_heads: xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads) og_dtype = xq.dtype if self.float32_attention: xq = xq.to(torch.float) xk = xk.to(torch.float) dropout_p = 0.0 if not self.training else self.attention_dropout if self.attn_implementation == "eager": attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk) attn_weights = F.softmax(attn_weights, dim=-1) attn_weights = F.dropout( attn_weights, p=dropout_p, training=self.training ) attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv) elif self.attn_implementation == "sdpa": if not torch.is_autocast_enabled(): xv = xv.to(torch.float) attn_output = F.scaled_dot_product_attention( xq.transpose(1, 2).contiguous(), xk.transpose(1, 2).contiguous(), xv.transpose(1, 2).contiguous(), attn_mask=attn_mask, is_causal=False, dropout_p=dropout_p, ).transpose(1, 2) elif self.attn_implementation == "flash_attention_2": assert not self.config.float32_attention # Downcast in case we are running with fp32 hidden states attn_output = _flash_attention_forward( xq.transpose(1, 2).to(torch.bfloat16), xk.transpose(1, 2).to(torch.bfloat16), xv.transpose(1, 2).to(torch.bfloat16), attention_mask=None, query_length=inputs_q.shape[1], is_causal=False, dropout=dropout_p, ) else: raise ValueError(f"Attention implementation {self.attn_implementation} not supported") attn_output = attn_output.to(og_dtype) attn_output = self._merge_heads(attn_output) attn_output = self.wo(attn_output) attn_output = self.residual_dropout(attn_output) return attn_output class MolmoActVisionBlock(nn.Module): def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None): super().__init__() self.attention = ViTMultiHeadDotProductAttention( hidden_size=config.hidden_size, num_heads=config.num_attention_heads, num_key_value_heads=config.num_key_value_heads, head_dim=config.head_dim, float32_attention=config.float32_attention, attention_dropout=config.attention_dropout, residual_dropout=config.residual_dropout, device=device, attn_implementation=config._attn_implementation, ) self.feed_forward = ViTMLP(config.hidden_size, config.intermediate_size, config.hidden_act, device=device) self.attention_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device) self.ffn_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x + self.attention(self.attention_norm(x)) x = x + self.feed_forward(self.ffn_norm(x)) return x class MolmoActVisionBlockCollection(nn.Module): def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None): super().__init__() self.conifg = config self.resblocks = nn.ModuleList([ MolmoActVisionBlock(config, device) for _ in range(config.num_hidden_layers) ]) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: hidden_states = [] for r in self.resblocks: x = r(x) hidden_states.append(x) return hidden_states def _expand_token(token, batch_size: int): return token.view(1, 1, -1).expand(batch_size, -1, -1) class MolmoActVisionTransformer(nn.Module): def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None): super().__init__() self.config = config self.scale = config.hidden_size ** -0.5 # optional CLS self.num_prefix_tokens: int = 1 if config.use_cls_token else 0 if config.use_cls_token: self.class_embedding = nn.Parameter( torch.zeros(config.hidden_size, device=device) ) # positional embeddings self.positional_embedding = nn.Parameter( torch.zeros(config.image_num_pos, config.hidden_size, device=device), ) image_patch_size = config.image_patch_size self.patch_embedding = nn.Linear( image_patch_size * image_patch_size * 3, config.hidden_size, bias=config.patch_bias, device=device, ) # optional pre-LN self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device) \ if config.pre_layernorm else None self.transformer = MolmoActVisionBlockCollection(config, device) def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor: pos_emb = self.positional_embedding if self.config.use_cls_token: cls_pos, pos_emb = pos_emb[:1], pos_emb[1:] # split out CLS pos_emb = pos_emb.reshape( (int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1]) ) (patch_num_0, patch_num_1) = patch_num if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1: # Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py # antialias: default True in jax.image.resize pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2) pos_emb = F.interpolate( pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True, ) pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0) pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1]) if self.config.use_cls_token: x = x + torch.cat([cls_pos[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype) else: x = x + pos_emb[None, :, :].to(x.dtype) return x def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]: """ : param x: (batch_size, num_patch, n_pixels) """ if patch_num is None: patch_num = self.config.image_num_patch B, N, D = x.shape x = self.patch_embedding(x) if self.config.use_cls_token: x = torch.cat([_expand_token(self.class_embedding, x.size(0)).to(x.dtype), x], dim=1) # class embeddings and positional embeddings x = self.add_pos_emb(x, patch_num) if self.pre_ln is not None: x = self.pre_ln(x) hidden_states = self.transformer(x) return hidden_states class ImageProjectorMLP(nn.Module): def __init__( self, input_dim: int, hidden_dim: int, output_dim: int, hidden_act: str, device: Union[str, torch.device] = None, ): super().__init__() self.w1 = nn.Linear(input_dim, hidden_dim, bias=False, device=device) self.w2 = nn.Linear(hidden_dim, output_dim, bias=False, device=device) self.w3 = nn.Linear(input_dim, hidden_dim, bias=False, device=device) self.act = ACT2FN[hidden_act] def forward(self, x: torch.Tensor) -> torch.Tensor: return self.w2(self.act(self.w1(x)) * self.w3(x)) class MolmoActVisionBackbone(nn.Module): def __init__(self, vit_config: MolmoActVitConfig, adapter_config: MolmoActAdapterConfig): super().__init__() self.vit_config = vit_config self.adapter_config = adapter_config self.vit_layers = [] for layer in adapter_config.vit_layers: if layer >= 0: self.vit_layers.append(layer) else: self.vit_layers.append(layer + vit_config.num_hidden_layers) last_layer_needed = max(self.vit_layers) + 1 if last_layer_needed < vit_config.num_hidden_layers: new_vit_config = deepcopy(vit_config) new_vit_config.num_hidden_layers = last_layer_needed self.image_vit = MolmoActVisionTransformer(new_vit_config) else: self.image_vit = MolmoActVisionTransformer(vit_config) self.num_prefix_tokens: int = self.image_vit.num_prefix_tokens # optional pad_embed self.pad_embed = None if adapter_config.image_padding_embed == "pad_and_partial_pad": pool_dim = vit_config.hidden_size * len(adapter_config.vit_layers) self.pad_embed = nn.Parameter(torch.zeros((2, pool_dim))) pool_dim = vit_config.hidden_size * len(adapter_config.vit_layers) self.image_pooling_2d = ViTMultiHeadDotProductAttention( hidden_size=adapter_config.hidden_size, num_heads=adapter_config.num_attention_heads, num_key_value_heads=adapter_config.num_key_value_heads, head_dim=adapter_config.head_dim, input_dim=pool_dim, float32_attention=adapter_config.float32_attention, attention_dropout=adapter_config.attention_dropout, residual_dropout=adapter_config.residual_dropout, attn_implementation=adapter_config._attn_implementation, ) self.image_projector = ImageProjectorMLP( adapter_config.hidden_size, adapter_config.intermediate_size, adapter_config.text_hidden_size, adapter_config.hidden_act, ) self.image_feature_dropout = nn.Dropout(adapter_config.image_feature_dropout) def encode_image(self, images: torch.Tensor) -> torch.Tensor: """ : param images: (batch_size, num_crops, num_patch, n_pixels) """ B, T, N, D = images.shape images = images.view(B * T, N, D) image_features = self.image_vit(images) features = [] for layer in self.vit_layers: features.append(image_features[layer]) image_features = torch.cat(features, dim=-1) if self.num_prefix_tokens > 0: image_features = image_features[:, 1:] image_features = image_features.view(B, T, N, -1) return image_features @property def dtype(self) -> torch.dtype: return self.image_vit.patch_embedding.weight.dtype @property def device(self) -> torch.device: return self.image_vit.patch_embedding.weight.device def forward( self, images: torch.Tensor, pooled_patches_idx: torch.Tensor, image_masks: torch.Tensor = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: # image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim) batch_size, num_image = images.shape[:2] images = images.to(device=self.device, dtype=self.dtype) image_features = self.encode_image(images) # optional padding embeddings if self.pad_embed is not None and image_masks is not None: image_masks = image_masks.to(device=self.device) all_pad = (image_masks == 0).to(image_features.dtype) partial = torch.logical_and(image_masks < 1, ~ (image_masks == 0)).to(image_features.dtype) image_features = image_features + self.pad_embed[0][None,None,None,:] * all_pad[...,None] \ + self.pad_embed[1][None,None,None,:] * partial[...,None] image_features = self.image_feature_dropout(image_features) dim = image_features.shape[-1] valid = pooled_patches_idx >= 0 valid_token = torch.any(valid, -1) # Use `pooled_patches_idx` to arange the features for image pooling batch_idx = torch.arange(pooled_patches_idx.shape[0], dtype=torch.long, device=pooled_patches_idx.device) batch_idx = torch.tile(batch_idx.view(batch_size, 1, 1), [1, pooled_patches_idx.shape[1], pooled_patches_idx.shape[2]]) # Now [batch, num_high_res_features, pool_dim, dim] to_pool = image_features.reshape(batch_size, -1, dim)[batch_idx, torch.clip(pooled_patches_idx, 0)] to_pool = to_pool * valid.to(self.dtype)[:, :, :, None] to_pool = to_pool.reshape([-1, pooled_patches_idx.shape[-1], dim]) query = to_pool.mean(-2, keepdim=True) pooled_features = self.image_pooling_2d(query, to_pool) pooled_features = pooled_features.reshape([batch_size, -1, pooled_features.shape[-1]]) # MLP layer to map the feature. pooled_features = self.image_projector(pooled_features) return pooled_features.view(-1, pooled_features.shape[-1])[valid_token.flatten()] # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding class MolmoActRotaryEmbedding(nn.Module): def __init__(self, config: MolmoActLlmConfig, device: Union[str, torch.device] = None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) @use_kernel_forward_from_hub("RMSNorm") class MolmoActRMSNorm(nn.Module): def __init__( self, size: int, eps: float = 1e-6, device: Union[str, torch.device] = None, ): super().__init__() self.weight = nn.Parameter(torch.ones(size, device=device)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: with torch.autocast(enabled=False, device_type=x.device.type): og_dtype = x.dtype x = x.to(torch.float32) variance = x.pow(2).mean(-1, keepdim=True) x = x * torch.rsqrt(variance + self.eps) x = x.to(og_dtype) return self.weight * x def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.eps}" # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class MolmoActAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" # copied from transformers.models.llama.modeling_llama.LlamaAttention.__init__ with Llama->MolmoAct def __init__(self, config: MolmoActLlmConfig, layer_idx: Optional[int] = None) -> None: super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.num_heads = config.num_attention_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.head_dim = config.head_dim self.scaling = self.head_dim**-0.5 self.is_causal = True if (config.head_dim * config.num_attention_heads) != config.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {config.hidden_size}" f" and `num_attention_heads`: {config.num_attention_heads})." ) self.fused_dims = ( config.hidden_size, config.head_dim * config.num_key_value_heads, config.head_dim * config.num_key_value_heads, ) self.att_proj = nn.Linear( config.hidden_size, sum(self.fused_dims), bias=config.qkv_bias, ) # Layer norms. self.k_norm: Optional[MolmoActRMSNorm] = None self.q_norm: Optional[MolmoActRMSNorm] = None self.qk_norm_type: Optional[str] = None if config.use_qk_norm: k_norm_size = ( config.head_dim if config.qk_norm_type == "qwen3" else config.num_key_value_heads * config.head_dim ) self.k_norm = MolmoActRMSNorm(k_norm_size, eps=config.layer_norm_eps) q_norm_size = ( config.head_dim if config.qk_norm_type == "qwen3" else config.num_attention_heads * config.head_dim ) self.q_norm = MolmoActRMSNorm(q_norm_size, eps=config.layer_norm_eps) self.qk_norm_type = config.qk_norm_type self.attention_dropout = config.attention_dropout self.attn_out = nn.Linear( config.hidden_size, config.hidden_size, bias=False, ) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) qkv = self.att_proj(hidden_states) query_states, key_states, value_states = qkv.split(self.fused_dims, dim=-1) value_states = value_states.view(hidden_shape) # Optionally apply layer norm to keys and queries. if self.q_norm is not None and self.k_norm is not None and self.qk_norm_type != "qwen3": query_states = self.q_norm(query_states) key_states = self.k_norm(key_states) query_states = query_states.view(hidden_shape) key_states = key_states.view(hidden_shape) if self.q_norm is not None and self.k_norm is not None and self.qk_norm_type == "qwen3": query_states = self.q_norm(query_states) key_states = self.k_norm(key_states) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.attn_out(attn_output) return attn_output, attn_weights class LanguageModelMLP(nn.Module): def __init__( self, input_dim: int, intermediate_size: int, hidden_act: str, device: Union[str, torch.device] = None, ): super().__init__() self.ff_proj = nn.Linear(input_dim, intermediate_size * 2, bias=False, device=device) self.ff_out = nn.Linear(intermediate_size, input_dim, bias=False, device=device) self.act = ACT2FN[hidden_act] def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.ff_proj(x) x, gate = x.chunk(2, dim=-1) x = self.act(gate) * x x = self.ff_out(x) return x class MolmoActDecoderLayer(GradientCheckpointingLayer): def __init__( self, config: MolmoActLlmConfig, layer_idx: Optional[int] = None, device: Union[str, torch.device] = None ): super().__init__() self.config = config self.self_attn = MolmoActAttention(config, layer_idx) self.attn_norm = MolmoActRMSNorm( config.hidden_size, eps=config.layer_norm_eps, device=device) self.dropout = nn.Dropout(config.residual_dropout) self.mlp = LanguageModelMLP( config.hidden_size, config.intermediate_size, config.hidden_act, device=device) self.ff_norm = MolmoActRMSNorm( config.hidden_size, eps=config.layer_norm_eps, device=device) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.attn_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) hidden_states = residual + self.dropout(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.ff_norm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + self.dropout(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class MolmoActPostNormDecoderLayer(MolmoActDecoderLayer): def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, ) hidden_states = self.attn_norm(hidden_states) hidden_states = residual + self.dropout(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.mlp(hidden_states) hidden_states = self.ff_norm(hidden_states) hidden_states = residual + self.dropout(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs class MolmoActEmbedding(nn.Module): def __init__( self, num_embeddings: int, num_new_embeddings: int, features: int, device: Union[str, torch.device] = None, ): super().__init__() self.embedding = nn.Parameter( torch.zeros(num_embeddings, features, device=device), ) self.new_embedding = nn.Parameter( torch.zeros(num_new_embeddings, features, device=device), ) def forward(self, x: torch.Tensor) -> torch.Tensor: return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0)) MOLMO2_TEXT_ONLY_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`CausalLMOutputWithPast`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare MolmoAct text-only model outputting raw hidden-states without any specific head on top.", MOLMO_START_DOCSTRING, ) class MolmoActLlm(MolmoActPreTrainedModel): def __init__(self, config: MolmoActLlmConfig): super().__init__(config) self.config = config if config.additional_vocab_size is not None: self.wte = MolmoActEmbedding( config.vocab_size, config.additional_vocab_size, config.hidden_size, ) else: self.wte = nn.Embedding(config.vocab_size, config.hidden_size) self.emb_drop = nn.Dropout(config.embedding_dropout) decoder_layer = MolmoActPostNormDecoderLayer if config.norm_after else MolmoActDecoderLayer self.blocks = nn.ModuleList( [decoder_layer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.ln_f = MolmoActRMSNorm(config.hidden_size, eps=config.layer_norm_eps) self.rotary_emb = MolmoActRotaryEmbedding(config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> torch.nn.Module: return self.wte def set_input_embeddings(self, value: torch.nn.Module) -> None: self.wte = value @can_return_tuple def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> BaseModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache if not isinstance(past_key_values, (type(None), Cache)): raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") if inputs_embeds is None: input_ids = input_ids * (input_ids != -1).to(input_ids.dtype) inputs_embeds = self.wte(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_block in self.blocks[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = decoder_block( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.ln_f(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) def _update_causal_mask( self, attention_mask: Union[torch.Tensor, "BlockMask"], input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None if self.config._attn_implementation == "flex_attention": if isinstance(attention_mask, torch.Tensor): attention_mask = make_flex_block_causal_mask(attention_mask) return attention_mask # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype = input_tensor.dtype sequence_length = input_tensor.shape[1] if using_compilable_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu", "npu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask @add_start_docstrings( "The MolmoAct text-only model which consists of a language model + lm head.", MOLMO_START_DOCSTRING, ) class MolmoActForCausalLM(MolmoActPreTrainedModel, GenerationMixin): _tied_weights_keys = [] # Weights are not tied _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} base_model_prefix = "model" def __init__(self, config: MolmoActLlmConfig): super().__init__(config) self.model = MolmoActLlm(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> torch.nn.Module: return self.model.wte def set_input_embeddings(self, value: torch.nn.Module) -> None: self.model.wte = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, value: torch.nn.Module) -> None: self.lm_head = value def set_decoder(self, decoder: torch.nn.Module) -> None: self.model = decoder def get_decoder(self) -> torch.nn.Module: return self.model @can_return_tuple @add_start_docstrings_to_model_forward(MOLMO2_TEXT_ONLY_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs, ) -> CausalLMOutputWithPast: r""" ```python >>> from transformers import AutoTokenizer, MolmoActForCausalLM >>> model = MolmoActForCausalLM.from_pretrained("...") >>> tokenizer = AutoTokenizer.from_pretrained("...") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) MOLMO2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) images (`torch.FloatTensor` of shape `(batch_size, n_crops, 27*27, 3*14*14)`, *optional*): The input crops in with pixel values between 0 and 1 and normalized with SigLIP2 mean/std Each crop contains 27x27 patches with 14*14*3 pixel values image_masks (`torch.FloatTensor` of shape `(batch_size, n_crops, n_patches, n_features)`, *optional*): Image masks showing what percent of each patch is paddding pooled_patches_idx (`torch.LongTensor` of shape `(batch_size, n_image_tokens, n_pooled_patches)`): For each patch_id tokens in `input_ids`, the indices of the patches in `images` to pool for that token, masked with -1 means ignore the patch. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`MolmoActCausalLMOutputWithPast`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ @add_start_docstrings( "The bare MolmoAct model outputting raw hidden-states without any specific head on top.", MOLMO_START_DOCSTRING, ) class MolmoActModel(MolmoActPreTrainedModel): _checkpoint_conversion_mapping = {} def __init__(self, config: MolmoActConfig): super().__init__(config) self.transformer: MolmoActLlm = MolmoActLlm(config.llm_config) self.vision_backbone: Optional[MolmoActVisionBackbone] = None if config.vit_config is not None and config.adapter_config is not None: self.vision_backbone = MolmoActVisionBackbone(config.vit_config, config.adapter_config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> torch.nn.Module: return self.transformer.wte def set_input_embeddings(self, value: torch.nn.Module) -> None: self.transformer.wte = value @property def device(self) -> torch.device: return self.transformer.ln_f.weight.device def build_input_embeddings( self, input_ids: torch.LongTensor, images: Optional[torch.FloatTensor] = None, # image inputs image_masks: Optional[torch.Tensor] = None, pooled_patches_idx: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: # Get embeddings of input. # shape: (batch_size, seq_len, d_model) input_ids = input_ids * (input_ids != -1).to(input_ids.dtype) x = self.transformer.wte(input_ids) image_features: Optional[torch.FloatTensor] = None if images is not None: image_features = self.vision_backbone(images, pooled_patches_idx) is_image_patch = input_ids.view(-1) == self.config.image_patch_id assert is_image_patch.sum() == len(image_features) x.view(-1, x.shape[-1])[is_image_patch] += image_features # shape: (batch_size, seq_len, d_model) x = self.transformer.emb_drop(x) # type: ignore return x, image_features @can_return_tuple def forward( self, input_ids: Optional[torch.LongTensor] = None, images: Optional[torch.FloatTensor] = None, image_masks: Optional[torch.Tensor] = None, pooled_patches_idx: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, MolmoActModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if images is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both images and inputs_embeds at the same time." ) if inputs_embeds is None: inputs_embeds, image_features = self.build_input_embeddings( input_ids, images, image_masks, pooled_patches_idx) outputs = self.transformer( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, ) return MolmoActModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if images is not None else None, ) @add_start_docstrings( "The MolmoAct model which consists of a vision backbone and a language model + lm head.", MOLMO_START_DOCSTRING, ) class MolmoActForActionReasoning(MolmoActPreTrainedModel, GenerationMixin): _checkpoint_conversion_mapping = {} _tied_weights_keys = [] # Weights are not tied config_class = MolmoActConfig def __init__(self, config: MolmoActConfig): super().__init__(config) self.model = MolmoActModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.vocab_size = config.vocab_size # Initialize weights and apply final processing self.post_init() # --- Action parsing / de-tokenization setup --- # Stats dict expected under config.norm_stats (per-dataset key). If missing, default to empty. self.norm_stats = getattr(config, "norm_stats", None) or {} # Number of discretization bins used for action tokens, defaults to 256. self.n_action_bins = getattr(config, "n_action_bins", 256) # Precompute bin centers in [-1, 1] for inverse token to value mapping. self.bins = np.linspace(-1.0, 1.0, self.n_action_bins) self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0 # Lazily constructed tokenizer for converting token strings to ids self._qwen_tokenizer = None def get_input_embeddings(self) -> torch.nn.Module: return self.model.transformer.wte def set_input_embeddings(self, value: torch.nn.Module) -> None: self.model.transformer.wte = value def get_output_embeddings(self): self.lm_head def set_output_embeddings(self, value: torch.nn.Module) -> None: self.lm_head = value # Make modules available throught conditional class for BC @property def language_model(self) -> torch.nn.Module: return self.model.transformer @property def vision_backbone(self) -> torch.nn.Module: return self.model.vision_backbone @can_return_tuple @add_start_docstrings_to_model_forward(MOLMO2_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, images: Optional[torch.Tensor] = None, image_masks: Optional[torch.Tensor] = None, pooled_patches_idx: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs, ) -> Union[Tuple, MolmoActCausalLMOutputWithPast]: r""" ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, MolmoActForActionReasoning >>> model = MolmoActForActionReasoning.from_pretrained("...") >>> processor = AutoProcessor.from_pretrained("...") >>> prompt = "What's the content of the image?" >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, text=prompt, apply_chat_template=True, return_tensors="pt") >>> # Generate >>> generated_ids = model.generate(**inputs, max_new_tokens=15) >>> generated_tokens = generated_ids[:, inputs['input_ids'].size(1):] >>> processor.batch_decode(generated_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "The image features a busy city street with a stop sign prominently displayed" ```""" outputs = self.model( input_ids=input_ids, images=images, image_masks=image_masks, pooled_patches_idx=pooled_patches_idx, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, ) hidden_states = outputs.last_hidden_state slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size) return MolmoActCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states, ) # ===== Utilities for action parsing / un-normalization ===== def _check_unnorm_key(self, unnorm_key: Optional[str]) -> str: """Validate and resolve which dataset key to use from self.norm_stats.""" if not self.norm_stats: raise ValueError("No norm_stats found in config; cannot unnormalize actions.") if unnorm_key is None: if len(self.norm_stats) != 1: raise ValueError( f"Model has multiple dataset stats; please pass `unnorm_key` from {list(self.norm_stats.keys())}" ) return next(iter(self.norm_stats.keys())) if unnorm_key not in self.norm_stats: raise ValueError(f"`unnorm_key`={unnorm_key!r} not in {list(self.norm_stats.keys())}") return unnorm_key def get_action_dim(self, unnorm_key: Optional[str] = None) -> int: """Return action dimensionality from q01 stats length for the dataset key.""" key = self._check_unnorm_key(unnorm_key) return len(self.norm_stats[key]["action"]["q01"]) def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]: """Return the full action stats dict for a given dataset key.""" key = self._check_unnorm_key(unnorm_key) return self.norm_stats[key]["action"] @torch.no_grad() def parse_action(self, text: str, unnorm_key: Optional[str] = None) -> list: """ Parse a generated text to extract one 1×D action token list, decode to continuous values, and unnormalize using dataset-specific stats from `config.norm_stats`. This follows the pipeline used in `experiments/robot/libero/main_libero_10_evaluation.py`: - Find bracketed token lists following the phrase "the action that the robot should take is" (case-insensitive), falling back to any bracketed list in the text. - Convert token strings → ids via Qwen2Tokenizer. - Map ids → discretized bin indices using: `discretized = vocab_size - token_id - 1` (clipped to bins) - Convert bins → normalized actions in [-1, 1] using precomputed `bin_centers`. - Unnormalize with q01/q99 and optional `mask` from norm_stats. Returns: List[float]: unnormalized action vector of length D. """ # Resolve action dimension and stats action_dim = self.get_action_dim(unnorm_key) stats = self.get_action_stats(unnorm_key) q01 = np.asarray(stats["q01"], dtype=np.float32) q99 = np.asarray(stats["q99"], dtype=np.float32) mask = np.asarray(stats.get("mask", np.ones_like(q01, dtype=bool)), dtype=bool) # Lazily load the tokenizer (shared across calls) if self._qwen_tokenizer is None: self._qwen_tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen2-7B") token_lists = extract_action_token_lists(text, only_len=action_dim) action_lists = [] # Choose the first list (temporal aggregation, if any, should be done by the caller) for tokens in token_lists: # Convert tokens → ids (replace None with vocab_size to avoid negatives) ids = self._qwen_tokenizer.convert_tokens_to_ids(tokens) ids = [self._qwen_tokenizer.vocab_size if i is None else int(i) for i in ids] ids = np.asarray(ids, dtype=np.int64) # ids → discretized bin indices → normalized actions in [-1, 1] discretized = self._qwen_tokenizer.vocab_size - ids discretized = np.clip(discretized - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1) normalized = self.bin_centers[discretized] # Unnormalize using per-dimension statistics unnorm = 0.5 * (normalized + 1.0) * (q99 - q01) + q01 actions = np.where(mask, unnorm, normalized) action_lists.append([float(x) for x in actions]) # Return a Python list of float actions return action_lists @torch.no_grad() def parse_trace(self, text: str) -> list: return extract_trace_lists(text, point_len=2, min_points=1) @torch.no_grad() def parse_depth(self, text: str) -> list: return extract_depth_string(text, include_tags=True) def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, images: Optional[torch.FloatTensor] = None, image_masks: Optional[torch.Tensor] = None, pooled_patches_idx: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Optional[Union[int, torch.Tensor]] = None, **kwargs, ): model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, logits_to_keep=logits_to_keep, **kwargs, ) if cache_position[0] == 0: model_inputs["images"] = images model_inputs["pooled_patches_idx"] = pooled_patches_idx model_inputs["image_masks"] = image_masks return model_inputs def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, num_new_tokens: int = 1, ) -> Dict[str, Any]: if model_kwargs["use_cache"] and "images" in model_kwargs: # After the first step, no long pass the images into forward since the images tokens # are already cached for k in ["images", "image_masks", "pooled_patches_idx"]: del model_kwargs[k] return super()._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder, num_new_tokens) @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask # Always register for multi-modal features AutoModelForImageTextToText.register(MolmoActConfig, MolmoActForActionReasoning) AutoModelForCausalLM.register(MolmoActLlmConfig, MolmoActForCausalLM)